细化搜索
结果 1681-1690 的 7,280
High expression of HIF-1α alleviates benzene-induced hematopoietic toxicity and immunosuppression in mice
2022
Huang, Jiawei | Pu, Yunqiu | Xu, Kai | Ding, Qin | Sun, Rongli | Yin, Lihong | Zhang, Juan | Pu, Yuepu
Benzene exposure can cause pancytopenia and immunosuppression, leading to serious diseases such as aplastic anemia (AA) or acute myeloid leukemia (AML), but the underlying mechanism has not been fully elucidated. Hypoxia-inducible factor 1 (HIF-1) is an important transcription factor that regulates many downstream target genes. In this study, we reported a novel mechanism by which high expression of HIF-1α alleviated benzene toxicity. Mice with high expression of HIF-1α (HIF-1α⁺) were obtained by the Tet-on system and doxycycline induction, and they and wild-type (WT) mice were exposed to 150 mg/kg benzene for 0, 1, 3, 7, 10, 14, and 28 days. Dynamic changes in hematopoietic and immune-related indicators and the role of HIF-1α were explored. The level of white blood cells in mice reached the highest level on the third day, and immunity was activated and then suppressed within 10 days. Significant pancytopenia and immunosuppression occurred at 14 days and were more pronounced at 28 days. The levels of HIF-1α, EPO, VEGF, RORγt, and IL-17 in WT mice gradually decreased with increasing benzene exposure days, while the levels of Foxp3 and IL-10 increased. These changes were alleviated in HIF-1α⁺ mice. High expression of HIF-1α increased the levels of EPO and VEGF, which helped to maintain the stability of the hematopoietic microenvironment. Simultaneously, it attenuated benzene-induced immunosuppression by alleviating the Th17/Treg imbalance. HIF-1α is expected to be a new target for benzene-induced diseases such as AA and AML.
显示更多 [+] 显示较少 [-]Assessing the emission consequences of an energy rebound effect in private cars in Israel
2022
Steren, Aviv | Rosenzweig, Stav | Rubin, Ofir D.
The UN Sustainable Development Goal, SDG 7.3, is to double the global rate of improvement in energy efficiency by 2030. To meet this and other energy targets, countries encourage the development and adoption of energy-efficient products. An extensively researched phenomenon in this context is the energy rebound effect, especially in transportation. However, the direct relationship between the energy rebound effect and car emission levels has barely been investigated. Understanding this relationship is important, because energy-related emissions are closely linked to mortality, morbidity, and climate change. We assess the emission consequences in the private car market in Israel of a rebound effect associated with a policy promoting energy-efficient cars. We find that the baseline rebound before introduction of the policy was 40%. In the following three periods marked by policy changes, it grew to 54%, 69%, and 88%. Using household data with specific car characteristics and usage, we calculate the added greenhouse gas (GHG) emission consequences of this rebound by the end of the studied period to be about 5% of the country's per-capita target. Notably, estimates for the emission consequences using “average car” values were almost twice as high. The reason for this gap derives from the co-dependance between car usage and car efficiency. We discuss the implications of this gap in meeting emission goals.
显示更多 [+] 显示较少 [-]Synthesis and characterization of lanthanum-based metal organic framework decorated polyaniline for effective adsorption of lead ions from aqueous solutions
2022
Govarthanan, M. | Jeon, Chang-Hyun | Kim, Woong
The novel La-MOF@x%PANI composite was synthesized via a two-step procedure with ultra-sonication, and the adsorption mechanism of Pb²⁺ ions from synthetic aqueous solutions was systematically studied. The Pb²⁺ adsorption on the La-MOF@x%PANI was evaluated by the Fourier transform infrared spectroscopy, powder X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray analysis, Brunauer–Emmett–Teller analysis, X-ray photoelectron spectroscopy, and elemental mapping analyses. The effects of the adsorption-influencing parameters, including contact time, solution pH, and co-existing cations on the maximum adsorption capacity of Pb²⁺ onto the prepared composite material were investigated. Moreover, the adsorption of Pb²⁺ ions could be eliminated with rapid adsorption kinetics using the water-stable La-MOF@x%PANI composite. The as-synthesized La-MOF@50%PANI exhibited excellent adsorption performance toward Pb²⁺ ions with an extraordinary adsorption capacity of 185.19 mg/g at pH 6. The Pb²⁺ adsorption onto the La-MOF@x%PANI composite follows the pseudo-second-order kinetics and fits well with the Langmuir isotherm model, indicating the Pb²⁺ adsorption depended on the solution pH as the adsorption mechanism was mainly governed by the electrostatic attraction. Notably, La-MOF@x%PANI composite possesses outstanding regeneration ability and stability after up to four successive cycles. The satisfactory findings reflect that the La-MOF@50%PANI hybrid composite holds a great promise for remediating Pb²⁺ ions from aqueous environments.
显示更多 [+] 显示较少 [-]Bio-effects of bio-based and fossil-based microplastics: Case study with lettuce-soil system
2022
Zhang, Ying | Zhang, Chunxiang | Jiang, Min | Zhou, Guangyuan
Bio-based plastics have been developed as alternative materials to solve the energy crisis brought by plastic production, but their impacts on soil ecosystems (e.g. plant and microorganisms) remain largely unknown. Here, we conducted study on the impacts of polyethylene 2,5-furan-dicarboxylate (PEF), a new bio-based plastic, on the plant-soil ecosystem, with comparison of fossil-based plastic polyethylene terephthalate (PET). Our investigation showed that, after 21 days exposure to microplastics (MPs) at doses of 0.5%, 1% and 2%, both PEF and PET MPs inhibited the growth of lettuce, where chlorophyll was found to be the most sensitive index. According to the comprehensive stress resistance indicators, PET MPs showed more severe phytotoxicity than PEF MPs. Although both PEF and PET MPs could inhibit soil enzyme activities, PET MPs exhibited significantly reduction on the diversity of rhizosphere soil bacterial community and changed the relative abundance of dominant species. Our study gave insights into the effects of PEF and PET MPs on the plant-soil system, where bio-based PEF MPs showed more friendly interaction with plant and soil than fossil-based PET MPs. Our results provided scientific data for risk assessment and useful information for the prospective application of bio-based plastics.
显示更多 [+] 显示较少 [-]Bisphenol-diglycidyl ethers in paired urine and serum samples from children and adolescents: Partitioning, clearance and exposure assessment
2022
Yang, Runhui | Duan, Jiali | Li, Hong | Sun, Ying | Shao, Bing | Niu, Yumin
Bisphenol A diglycidyl ether (BADGE), bisphenol F diglycidyl ether (BFDGE), and their derivatives are frequently used in food packaging materials. Some toxicological studies have shown that the endocrine-disrupting activities of these compounds are similar to or higher than those of bisphenol A (BPA), which may also adversely affect the growth and development of children and adolescents. Here, we investigated nine bisphenol-diglycidyl ethers (BDGEs) in 181 paired urine and serum samples from children and adolescents from Beijing to determine their partitioning, clearance and exposure levels. The results showed that nine BDGEs were detected in 181 urine and serum samples from children and adolescents from Beijing. Bisphenol A bis(2,3-dihydroxypropyl) glycidyl ether (BADGE·2H₂O) was the primary pollutant. The daily intake of ∑BDGEs was 15.217 ng/kg bw/day among children and adolescents in Beijing. The ranking of BDGEs in terms of renal clearance rate (CLᵣₑₙₐₗ) in this study population was BADGE > BADGE·2H₂O > BFDGE > bisphenol F bis(3-chloro-2-hydroxypropyl) glycidyl ether (BFDGE·2HCl) > bisphenol A (3-chloro-2-hydroxypropyl) (2,3-dihydroxypropyl) glycidyl ether (BADGE·HCl·H₂O). In addition, the serum and urine ratios (S/U ratios) of BFDGE·2HCl, BADGE·2H₂O, BFDGE, BADGE, and BADGE·HCl·H₂O were higher than 1, indicating that these contaminants have a higher enrichment capacity in human blood. To our knowledge, this is the first study on the partitioning and renal clearance rate of BDGEs in paired urine and serum samples from children and adolescents.
显示更多 [+] 显示较少 [-]Multimedia distribution of polycyclic aromatic hydrocarbons in the Wang Lake Wetland, China
2022
Shi, Changhe | Qu, Chengkai | Sun, Wen | Zhou, Jingzhe | Zhang, Jiawei | Cao, Yu | Zhang, Yuan | Guo, J. (Jiahua) | Zhang, Jiaquan | Qi, Shihua
The Wang Lake Wetland is a highly valued area that is protected due to its high biodiversity. The wetland has a complicated hydrological regime and is subject to frequent human disturbance. We hypothesize that fluctuating hydrology and human activities have varied contributions to the temporal and spatial variations of polycyclic aromatic hydrocarbons (PAHs) in the wetland. Soil (SS), sediment (SD), and water, to acquire dissolved phase (DP) and suspended particulate matter (SPM), samples were collected from eight locations during low- and high-flow periods to elucidate multimedia phase distribution and transport of PAHs. Following the onset of the rainy season, the concentration of SPM-associated PAHs increased significantly, while the DP PAHs remained stable. Individual PAH ratios showed that, although pyrogenic sources are common, petrogenic derived compounds are the main source of PAHs in the Wang Lake Wetland. During the high-flow period, the empirical values for logarithms of the organic carbon-normalized partition coefficients (log KOC) of individual PAH-congeners were lower than the corresponding field-observed log KOC values from the SPM-DP and SD-DP systems, reflecting the complexity in evaluating multi-phase PAH partitioning. During the high-flow period, temperature-driven changes may have changed the sediment from a sink to a source for some high molecular weight PAHs. It was determined that human activities governed the PAH loading in the low-flow period, whereas during high-flow conditions, increased rainfall, higher temperatures, and fishery activity are the main factors controlling PAH input to the Wang Lake Wetland.
显示更多 [+] 显示较少 [-]Optimizing nitrogen management reduces mineral nitrogen leaching loss mainly by decreasing water leakage in vegetable fields under plastic-shed greenhouse
2022
Zhou, Weiwei | Lv, Haofeng | Chen, Fei | Wang, Qunyan | Li, Junliang | Chen, Qing | Liang, Bin
Excessive fertilization leads to high nitrogen (N) leaching under intensive plastic-shed vegetable production systems, and thereby results in the contaminations of ground or surface water. Therefore, it is urgent to develop cost-effective strategies of nitrogen management to overcome these obstacles. A 15-year experiment in annual double-cropping systems was conducted to explore impacts of N application rate and straw amendment on mineral N leaching loss in plastic-shed greenhouse. The results showed that seasonal mineral N leaching was up to 103.4–603.4 kg N ha⁻¹, accounting for 12%–41% of total N input under conventional N fertilization management. However, optimized N application rates by 47% and straw addition obviously decreased mineral N leaching by 4%–86%, while had no negative impacts on N uptake and tomato yields. These large decreases of N leaching loss were mainly due to the reduced leachate amount and followed by N concentration in leachate, which was supported by improved soil water holding capacity after optimizing N application rates and straw addition. On average, 52% of water leachate and 55% of mineral N leaching simultaneously occurred within 40 days after planting, further indicating the dominant role of water leakage in regulating mineral N leaching loss. Moreover, decreasing mineral N leaching was beneficial for reducing leaching loss of base cations. Therefore, optimized N application rates and straw amendment effectively alleviates mineral N leaching losses mainly by controlling the water leakage without yield loss in plastic-shed greenhouse, making this strategy promising and interesting from environmental and economical viewpoints.
显示更多 [+] 显示较少 [-]Using tissue cysteine to predict the trophic transfer of methylmercury and selenium in lake food webs
2022
Thera, Jennifer C. | Kidd, Karen A. | Stewart, A Robin | Bertolo, Robert F. | O'Driscoll, Nelson J.
The biomagnification of toxic methylmercury (MeHg) and selenium (Se) through aquatic food webs using nitrogen stable isotopes (δ¹⁵N) varies among ecosystems but underlying mechanisms are yet unexplained. Given the strong links between MeHg and thiol-containing amino acids and proteins containing selenocysteine, our hypothesis was that cysteine content is a better predictor of MeHg and Se transfer through lake food webs than δ¹⁵N. Food web samples were collected from six lakes in Kejimkujik National Park, Nova Scotia, Canada, and the regression slopes of log MeHg or Se versus protein-bound cysteine or bulk δ¹⁵N were compared. Across all six lakes, MeHg varied by a factor of 10 among taxa and was significantly and positively related to both cysteine (R² = 0.65–0.80, p < 0.001) and δ¹⁵N (R² = 0.88–0.94, p < 0.001), with no among-system differences in these slopes. In contrast, total Se concentrations varied by less than a factor of 2 among taxa in four lakes and were significantly related to cysteine in only two food webs (R² = 0.20 & 0.37, p = 0.014 & < 0.001); however, δ¹⁵N was not a predictor of Se in any lake (p = 0.052–0.777). Overall, these novel results indicate that cysteine content predicts MeHg, and sometimes Se, across trophic levels, providing a potential mechanism for among-system differences in their biomagnification.
显示更多 [+] 显示较少 [-]Rapid narrowing of the urban–suburban gap in air pollutant concentrations in Beijing from 2014 to 2019
2022
Li, Xue | Zhang, Fang | Ren, Jingye | Han, Wenchao | Zheng, Bo | Liu, Jieyao | Chen, Lu | Jiang, Sihui
Understanding the spatial patterns of atmospheric pollutants in urban and suburban areas is important for evaluating their effects on regional air quality, climate, and human health. The analyses of pollutant monitoring data of the China National Environmental Monitoring Center revealed that the differences in the concentrations of ambient O₃, PM₂.₅, NO₂, SO₂, and CO between urban and suburban areas rapidly decreased from 2014 to 2019 in Beijing. Considering the negligible urbanization and interannual meteorological changes during the study period, the results reveal a quick response of the urban-to-suburban difference (ΔUᵣbₐₙ₋Sᵤbᵤᵣbₐₙ) in the ambient pollutants concentrations to emission reduction measures implemented in China in 2013. However, owing to the efficient O₃ formation in summer in urban areas in recent years, we observed a more rapid decrease in the ΔUᵣbₐₙ₋Sᵤbᵤᵣbₐₙ in O₃ concentration in summer (64.8%) than in winter (16.1%). In addition, the ΔUᵣbₐₙ₋Sᵤbᵤᵣbₐₙ in daytime summer O₃ changed from negative in 2014–2018 to positive in 2019, indicating that the daytime O₃ concentration in urban areas exceeded that in suburban areas. Furthermore, instantaneous changes in ΔUᵣbₐₙ₋Sᵤbᵤᵣbₐₙ in air pollutants were more sensitive to meteorological variations in 2014 than in 2019. The results indicate a less significant role of regional air mass transport in the spatial variability of pollutants under a future scenario of strong emission reduction in China.
显示更多 [+] 显示较少 [-]Impact of catalytic hydrothermal treatment and Ca/Al-modified hydrochar on lability, sorption, and speciation of phosphorus in swine manure: Microscopic and spectroscopic investigations
2022
He, Xinyue | Zhang, Tao | Niu, Yingqi | Xue, Qing | Ali, Esmat F. | Shaheen, Sabry M. | Tsang, Daniel C.W. | Rinklebe, Jörg
The effects of catalytic hydrothermal (HT) pretreatment on animal manure followed by the addition of hydrochar on the nutrients recovery have not yet been investigated using a combination of chemical, microscopic, and spectroscopic techniques. Therefore, a catalytic HT process was employed to pretreat swine manure without additives (manure-HT) and with H₂O₂ addition (manure-HT- H₂O₂) to improve the conversion efficiency of labile or organic phosphorus (P) to inorganic phase. Then, a Ca–Al layered double hydroxide hydrochar (Ca/Al LDH@HC) derived from corn cob biomass was synthesized and applied to enhance P sorption. Scanning electron microscopy (SEM), and three-dimensional excitation emission matrix (3D-EEM), X-ray photoelectron spectroscopy (XPS), P k-edge X-ray absorption near edge structure (XANES), were used to elucidate the mechanisms of P release and capture. The H₂O₂ assisted HT treatment significantly enhanced the release of inorganic P (251.4 mg/L) as compared to the untreated manure (57.2 mg/L). The 3D-EEM analysis indicated that the labile or organic P was transformed and solubilized efficiently along with the deconstruction of manure components after the H₂O₂ assisted HT pretreatment. Application of Ca/Al LDH@HC improved the removal efficiency of P from the derived P-rich HT liquid. This sorption process was conformed to the pseudo-second-order model, suggesting that chemisorption was the primary mechanism. The results of SEM and P k-edge XANES exhibited that Ca, as the dominated metal component, could act as a reaction site for the formation of phosphate precipitation. These results provide critical findings about recovering P from manure waste, which is useful for biowastes management and nutrients utilization, and mitigating unintended P loss and potential environmental risks.
显示更多 [+] 显示较少 [-]