细化搜索
结果 171-180 的 4,935
Association between extracted copper and dissolved organic matter in dairy-manure amended soils 全文
2019
Araújo, Eloá | Strawn, Daniel G. | Morra, M. J. (Matthew John) | Moore, Amber | Ferracciú Alleoni, Luis Reynaldo
Dairy manure often has elevated concentrations of copper (Cu) that when applied to soil may create toxicity risks to seedlings and soil microbes. Manure application also increases dissolved organic matter (DOM) in soil solution. We hypothesize that high rates of dairy manure amendment over several years will cause increased DOM in the soil that complexes Cu, increasing its mobility. To test this hypothesis, this study investigated water soluble Cu concentrations and dissolved organic carbon (DOC) in soil samples from 3 years of manure-amended soils. Samples were collected at two depths over the first 3 years of a long-term manure-amendment field trial. DOC, Cu, Fe, and P concentrations were measured in water extracts from the samples. Ultraviolet/visible (UV/Vis) spectra were used to assess the DOC characteristics. After 3 years of manure application, extractable Cu concentration was approximately four times greater in the surface and two times greater in subsurface samples of manure-amended soils as compared to non-amended control soils and traditional mineral fertilizer-amended soils. The extractable Cu concentration was greatest in plots that had the highest manure amendment rates (35 t ha⁻¹ and 52 t ha⁻¹, dry weight). The UV/Vis parameters SUVA₂₅₄ and E₂/E₃ correlated with Cu concentration in the extracts (p < 0.05), suggesting that DOC characteristics are important in Cu-binding. The molecular characteristics of the DOC in the subsurface after 3 years of manure amendment were distinct from the DOC in the control plot, suggesting that manure amendment creates mobile DOC that may facilitate Cu mobilization through soil. The 10-fold increase in extractable Cu concentration after only 3 years of manure application indicates that repeated applications of the dairy manure sources used in this study at rates of 35 t/ha or greater may create risks for Cu toxicity and leaching of Cu into ground and surface waters.
显示更多 [+] 显示较少 [-]Temporal variation in zooplankton and phytoplankton community species composition and the affecting factors in Lake Taihu—a large freshwater lake in China 全文
2019
Li, Cuicui | Feng, Weiying | Chen, Haiyan | Li, Xiaofeng | Song, Fanhao | Guo, Wenjing | Giesy, John P. | Sun, Fuhong
Monitoring diverse components of aquatic ecosystems is vital for elucidation of diversity dynamics and processes, which alter freshwater ecosystems, but such studies are seldom conducted. Phytoplankton and zooplankton are integral components which play indispensable parts in the structure and ecological service function of water bodies. However, few studies were made on how zooplankton and phytoplankton community may respond simultaneously to change of circumstance and their mutual relationship. Therefore, we researched synchronously the phytoplankton communities as well as zooplankton communities based on monthly monitoring data from September 2011 to August 2012 in heavily polluted areas and researched their responses to variation in environmental parameters and their mutual relationship. As indicated by Time-lag analysis (TLA), the long-term dynamics of phytoplankton and zooplankton were undergoing directional variations, what's more, there exists significant seasonal variations of phytoplankton and zooplankton communities as indicated by Non-Metric Multidimensional scaling (NMDS) methods. Also, Redundancy Analysis (RDA) demonstrated that environmental indicators together accounted for 25.6% and 50.1% variance of phytoplankton and zooplankton, respectively, indicating that environmental variations affected significantly on the temporal dynamics of phytoplankton as well as zooplankton communities. What's more, variance partioning suggested that the major environmental factors influencing variation structures of zooplankton communities were water temperature, concentration of nitrogen, revealing the dominating driving mechanism which shaped the communities of zooplankton. It was also found that there was significant synchronization between zooplankton biomass and phytoplankton biomass (expressed as Chl-a concentration), which suggested that zooplankton respond to changes in dynamic structure of phytoplankton community and can initiate a decrease in phytoplankton biomass through grazing in a few months.
显示更多 [+] 显示较少 [-]Occupational exposure to volatile organic compounds and health risks in Colorado nail salons 全文
2019
Lamplugh, Aaron | Harries, Megan | Xiang, Feng | Trinh, Janice | Hecobian, Arsineh | Montoya, Lupita D.
Nail salon technicians face chronic exposure to volatile organic compounds (VOCs), which can lead to adverse health outcomes including cancer. In this study, indoor levels of formaldehyde, as well as benzene, toluene, ethylbenzene and xylene, were measured in 6 Colorado nail salons. Personal exposure VOC measurements and health questionnaires (n = 20) were also performed; questionnaires included employee demographics, health symptoms experienced, and protective equipment used. Cancer slope factors from the United States Environmental Protection Agency (US EPA) and anthropometric data from the Centers for Disease Control and Prevention were then used to estimate cancer risk for workers, assuming 20-yr exposures to concentrations of benzene and formaldehyde reported here. Results show that 70% of surveyed workers experienced at least one health issue related to their employment, with many reporting multiple related symptoms. Indoor concentrations of formaldehyde ranged from 5.32 to 20.6 μg m−3, across all 6 salons. Indoor concentrations of toluene ranged from 26.7 to 816 μg m−3, followed by benzene (3.13–51.8 μg m−3), xylenes (5.16–34.6 μg m−3), and ethylbenzene (1.65–9.52 μg m−3). Formaldehyde levels measured in one salon exceeded the Recommended Exposure Limit from the National Institute for Occupational Safety and Health. Cancer risk estimates from formaldehyde exposure exceeded the US EPA de minimis risk level (1 × 10−6) for squamous cell carcinoma, nasopharyngeal cancer, Hodgkin's lymphoma, and leukemia; leukemia risk exceeded 1 × 10−4 in one salon. The average leukemia risk from benzene exposure also exceeded the US EPA de minimis risk level for all demographic categories modeled. In general, concentrations of aromatic compounds measured here were comparable to those measured in studies of oil refinery and auto garage workers. Cancer risk models determined that 20-yr exposure to formaldehyde and benzene concentrations measured in this study will significantly increase worker's risk of developing cancer in their lifetime.
显示更多 [+] 显示较少 [-]Elucidating various geochemical mechanisms drive fluoride contamination in unconfined aquifers along the major rivers in Sindh and Punjab, Pakistan 全文
2019
Ali, Waqar | Aslam, Muhammad Wajahat | Junaid, Muhammad | Ali, Kamran | Guo, Yongkun | Rasool, Atta | Zhang, Hua
The present study aims to investigate the spatial distribution and associated various geochemical mechanisms responsible for fluoride (F⁻) contamination in groundwater of unconfined aquifer system along major rivers in Sindh and Punjab, Pakistan. The concentration of F⁻ in groundwater samples ranged from 0.1 to 3.9 mg/L (mean = 1.0 mg/L) in Sindh and 0.1–10.3 mg/L (mean = 1.0 mg/L) in Punjab, respectively with 28.9% and 26.6% of samples exhibited F⁻ contamination beyond WHO permissible limit value (1.5 mg/L). The geochemical processes regulated F⁻ concentration in unconfined aquifer mainly in Sindh and Punjab were categorized as follows: 1) minerals weathering that observed as the key process to control groundwater chemistry in the study areas, 2) the strong correlation between F⁻ and alkaline pH, which provided favorable environmental conditions to promote F⁻ leaching through desperation or by ion exchange process, 3) the 72.6% of samples from Sindh and Punjab were dominated by Na⁺- Cl⁻ type of water, confirmed that the halite dissolution process was the major contributor for F⁻ enrichment in groundwater, 4) dolomite dissolution was main process frequently observed in Sindh, compared with Punjab, 5) the arid climatic conditions promote evaporation process or dissolution of evaporites or both were contributing to the formation of saline groundwater in the study area, 6) the positive correlation observed between elevated F⁻ and fluorite also suggested that the fluorite dissolution also played significant role for leaching of F⁻ in groundwater from sediments, and 7) calcite controlled Ca2⁺ level and enhanced the dissolution of F-bearing minerals and drive F⁻ concentration in groundwater. In a nut shell, this study revealed the worst scenarios of F⁻ contamination via various possible geochemical mechanisms in groundwater along major rivers in Sindh and Punjab, Pakistan, which need immediate attention of regulatory authorities to avoid future hazardous implications.
显示更多 [+] 显示较少 [-]Effects of pyrethroid insecticides on hypothalamic-pituitary-gonadal axis: A reproductive health perspective 全文
2019
Ye, Xiaoqing | Liu, Jing
Pyrethroids, a class of ubiquitous insecticides, have been recognized as endocrine-disrupting chemicals (EDCs). A lot of studies have implied the endocrine-disrupting effects of pyrethroids on the hypothalamic-pituitary-gonadal (HPG) axis. However, there are few review articles regarding the effects of pyrethroids on the HPG axis of mammal and human, especially new research progress made in this area. The present review sums up the effects of pyrethroids on the HPG axis-related reproductive outcomes, including epidemiological investigations based on human biomonitoring, animal studies and in vitro tests. Mechanisms have described that the endocrine-disrupting effects of pyrethroids on mammal can be mediated via the interaction with steroid receptors, the direct action on ion channels and signaling molecules. Finally, we summarize the current research gaps and suggest future directions in this topic.
显示更多 [+] 显示较少 [-]Vertical distribution of 129I and radiocesium in forest soil collected near the Fukushima Daiichi Nuclear Power Plant boundary 全文
2019
Yang, Guosheng | Hu, Jun | Tsukada, Hirofumi | Tazoe, Hirofumi | Shao, Yang | Yamada, Masatoshi
Three soil core samples were collected from a forest located about 1.1 km south of the Fukushima Daiichi Nuclear Power Plant (FDNPP) boundary in 2017, and the vertical profiles of 129I from the FDNPP accident were determined by the combination of TMAH (tetramethyl ammonium hydroxide) extraction and ICP-MS/MS analysis. The humus layer above the soil layer was heavily contaminated with 134Cs (1983–5985 Bq g−1) and 137Cs (1947–5902 Bq g−1) (decay-corrected to March 11, 2011). The 129I activity concentrations decreased sharply with the soil depth, from 1894 to 34.1, from 9384 to 78.9, and from 2536 to 51.3 mBq kg−1, for the three sites. Downward migration of 129I was slightly faster than the one of 134Cs. In addition, the cumulative 129I inventories were observed to be 43.4 ± 1.0, 71.7 ± 1.8, and 56.5 ± 1.8 Bq m−2, respectively. Subsequently, the cumulative 131I inventories were estimated to be 1.76 ± 0.06, 2.90 ± 0.11, and 2.28 ± 0.10 GBq m−2 (decay-corrected to March 11, 2011), respectively. Finally, the total atmospheric deposition of 129I on the land of Japan due to the FDNPP accident was estimated to be around 1.09–1.71 kg (7.11–11.2 GBq).
显示更多 [+] 显示较少 [-]Synergetic mediation of reduced graphene oxide and Cu(II) on the oxidation of 2-naphthol in water 全文
2019
Pei, Zhiguo | Ma, Jie | Li, Lingyun | Xie, Jieli | Wang, Lingqing | Wen, Bei | Zhang, Shuzhen | Xing, Baoshan
Reduced graphene oxide (rGO) is one of the most widely used carbon nanomaterials. When it is released into the environment, rGO can markedly affect the transformation of many pollutants, and change their fate and risk. In this work, the synergetic effects of rGO and Cu(II) on the oxidation of 2-naphthol were examined in water in the dark. It was found that the coexistence of rGO and Cu(II) significantly promoted the oxidation of 2-naphthol. Corresponding products were identified as the coupling oligomers of 2-naphthol (dimer, trimer and tetramer) and hydroxylated compounds (OH-2-naphthol, OH-dimer, di–OH–dimer and naphthoquinone derivatives). In the oxidation reaction, rGO played dual roles, i.e. adsorbent and electron-transfer mediator. rGO firstly adsorbed Cu(II) and 2-naphthol on its surface, and then transferred electrons from 2-naphthol to Cu(II) to yield 2-naphthol radicals and Cu(I). 2-Naphthol radicals coupled to each other to form different oligomers of 2-naphthol. Cu(I) was re-oxidized back to Cu(II) by dissolved oxygen, which sustained the continuous oxidation of 2-naphthol. During the autoxidation of Cu(I), reactive oxygen species were generated, which further reacted with 2-naphthol to form hydroxylated products. These findings provide new insights into the risk assessment of rGO and 2-naphthol in aquatic environments.
显示更多 [+] 显示较少 [-]Effect of microplastic size on the adsorption behavior and mechanism of triclosan on polyvinyl chloride 全文
2019
Ma, Jie | Zhao, Jinghua | Zhu, Zhilin | Li, Liqing | Yu, Fei
Microplastics in water environment and its ability to load various environmental pollutants have attracted wide attention in recent years. However, effect of microplastic size on the adsorption behavior of environmental pollutants and interaction mechanism has not been thoroughly explored. In this study, triclosan (TCS) was selected as model pollutant, and polyvinyl chloride (PVC) with different particle sizes (small size (<1 μm) is recorded as PVC-S and PVC-L means large particle size of about 74 μm) were used as the typical microplastics, the adsorption behavior of TCS on PVC was investigated by studying kinetics, isotherms, and other influencing factors, such as pH and salinity. The results indicate PVC-S has greater distribution coefficient kd values of TCS (1.35 L/g > 1.05 L/g) and stronger adsorption capacity (12.7 mg/g > 8.98 mg/g) compared with PVC-L, which may be due to higher specific surface area, stronger hydrophobicity and relatively small electronegative property of PVC-S. Moreover, the initial pH value and salinity of the solution played crucial role in the adsorption process. The distribution diffusion mechanisms (including liquid-film diffusion and intra-particle diffusion), hydrophobic interaction, electrostatic interaction, halogen bonding, and hydrogen bonding may be the important reasons for adsorption. These findings show that MPs with different particle sizes have vary adsorption behaviors and load capacities for environmental pollutants, which deserve our further concerned.
显示更多 [+] 显示较少 [-]Estimating the relative magnitudes of adsorption to solid-water and air/oil-water interfaces for per- and poly-fluoroalkyl substances 全文
2019
Brusseau, Mark L.
Per- and poly-fluoroalkyl substances (PFAS) have attracted considerable concern due to their widespread occurrence in the environment and potential human health risks. Given the complexity of PFAS retention in multi-phase systems, it would be useful for characterization and modeling purposes to be able to readily determine the relative significance of the individual retention processes for a given PFAS and set of subsurface conditions. A quantitative-structure/property-relationship (QSPR) analysis was conducted for adsorption of PFAS by soils, sediments, and granular activated carbon (GAC), and integrated with a prior analysis conducted for adsorption to air-water and oil-water interfaces. The results demonstrated that a model employing molar volume provided reasonable predictions of organic-carbon normalized soil/sediment adsorption coefficients (log Kₒc), GAC-adsorption coefficients (log Kd), and air/oil-water interfacial adsorption coefficients (log Kᵢ) for PFAS. The relative magnitudes of solid-water and air/oil-water interfacial adsorption were compared as a function of controlling variables. A nomograph was developed that provides a first-order determination of the relative significance of these interfacial adsorption processes in multi-phase porous-media systems.
显示更多 [+] 显示较少 [-]Assessment of forest fire impacts on carbonaceous aerosols using complementary molecular marker receptor models at two urban locations in California's San Joaquin Valley 全文
2019
Bae, Min-Suk | Skiles, Matthew J. | Lai, Alexandra M. | Olson, Michael R. | de Foy, Benjamin | Schauer, James J.
Two hundred sixty-three fine particulate matter (PM₂.₅) samples were collected over fourteen months in Fresno and Bakersfield, California. Samples were analyzed for organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC), and 160 organic molecular markers. Chemical Mass Balance (CMB) and Positive Matrix Factorization (PMF) source apportionment models were applied to the results in order to understand monthly and seasonal source contributions to PM₂.₅ OC. Similar source categories were found from the results of the CMB and PMF models to PM₂.₅ OC across the sites. Six source categories with reasonably stable profiles, including biomass burning, mobile, food cooking, two different secondary organic aerosols (SOAs) (i.e., winter and summer), and forest fires were investigated. Both the CMB and the PMF models showed a strong seasonality in contributions of some sources, as well as dependence on wind transport for both sites. The overall relative source contributions to OC were 24% CMB wood smoke, 19% CMB mobile sources, 5% PMF food cooking, 2% CMB vegetative detritus, 17% PMF SOA summer, 22% PMF SOA winter, and 12% PMF forest fire. Back-trajectories using the Weather Research and Forecasting model combined with the FLEXible PARTicle dispersion model (WRF-FLEXPART) were used to further characterize wind transport. Clustering of the trajectories revealed dominant wind patterns associated with varying concentrations of the different source categories. The Comprehensive Air Quality Model with eXtensions (CAMx) was used to simulate aerosol transport from forest fires and thus confirm the impacts of individual fires, such as the Rough Fire, at the measurement sites.
显示更多 [+] 显示较少 [-]