细化搜索
结果 1721-1730 的 7,292
Accumulation of commonly used agricultural herbicides in coral reef organisms from iSimangaliso Wetland Park, South Africa 全文
2022
Tyohemba, Raymond L. | Humphries, Marc S. | Schleyer, M. H. | Porter, Sean N.
Coral reefs are amongst the most biodiverse ecosystems on earth, but are significantly impacted by agricultural runoff. Despite herbicides being commonly detected in coastal waters, the possibility of herbicide accumulation in coral reef species has largely been overlooked. We investigate the accumulation of several herbicides in five species of coral reef invertebrates collected from ten sites along the Maputaland coast, South Africa. Multiple herbicide residues were detected in 95% of the samples, with total average concentrations across sites ranging between 25.2 ng g⁻¹ to 51.3 ng g⁻¹ dw. Acetochlor, alachlor and hexazinone were the predominant herbicides detected at all sites, with atrazine and simazine detected less frequently. Significant interactive effects were detected between sites nested in reef complex crossed with species, based on multiple and total herbicide concentrations. In general, multivariate herbicide concentrations varied significantly between species within and across most sites. Contrastingly, the concentrations of the different herbicides and that of total herbicide did not differ between conspecifics at most sites nested in their respective reef complexes. On average, highest total herbicide concentrations were measured in soft coral (Sarcophyton glaucum; 90.4 ± 60 ng g⁻¹ and Sinularia gravis; 42.7 ± 25 ng g⁻¹) and sponge (Theonela swinhoei; 39.0 ± 40 ng g⁻¹) species, while significantly lower concentrations were detected in hard corals (Echinopora hirsutissima; 10.5 ± 5.9 ng g⁻¹ and Acropora austera; 5.20 ± 4.5 ng g⁻¹) at most sites. Agricultural runoff entering the ocean via the uMfolozi-St Lucia Estuary and Maputo Bay are likely sources of herbicide contamination to coral reefs in the region. There is an urgent need to assess the long-term effects of herbicide exposure on coral reef communities.
显示更多 [+] 显示较少 [-]Metal(loid) pollution, not urbanisation nor parasites predicts low body condition in a wetland bioindicator snake 全文
2022
Lettoof, Damian C. | Cornelis, Jari | Jolly, Christopher J. | Aubret, Fabien | Gagnon, Marthe Monique | Hyndman, Timothy H. | Barton, Diane P. | Bateman, Philip W.
Urban ecosystems and remnant habitat 'islands' therein, provide important strongholds for many wildlife species including those of conservation significance. However, the persistence of these habitats can be undermined if their structure and function are too severely disrupted. Urban wetlands, specifically, are usually degraded by a monoculture of invasive vegetation, disrupted hydrology, and chronic-contamination from a suite of anthropogenic pollutants. Top predators—as bioindicators—can be used to assess and monitor the health of these ecosystems. We measured eight health parameters (e.g., parasites, wounds and scars, tail loss and body condition) in a wetland top predator, the western tiger snake, Notechis scutatus occidentalis. For three years, snakes were sampled across four wetlands along an urban gradient. For each site, we used GIS software to measure the area of different landscapes and calculate an urbanisation–landscape score. Previously published research on snake contamination informed our calculations of a metal-pollution index for each site. We used generalised linear mixed models to assess the relationship between all health parameters and site variables. We found the metal-pollution index to have the most significant association with poor body condition. Although parasitism, tail loss and wounds differed among sites, none of these parameters influenced body condition. Additionally, the suite of health parameters suggested differing health status among sites; however, our measure of contemporary landscape urbanisation was never a significant predictor variable. Our results suggest that the health of wetland predators surrounding a rapidly growing city may be offset by higher levels of environmental pollution.
显示更多 [+] 显示较少 [-]Integration of biochar into Ag3PO4/α-Fe2O3 heterojunction for enhanced reactive oxygen species generation towards organic pollutants removal 全文
2022
Qian, Yifan | Shi, Jun | Yang, Xianni | Yuan, Yangfan | Liu, Li | Zhou, Ganghua | Yi, Jianjian | Wang, Xiaozhi | Wang, Shengsen
A biochar (BC) harbored Ag₃PO₄/α-Fe₂O₃ type-Ⅰ heterojunction (Ag-Fe-BC) was prepared by a hydrothermal-impregnation method to transfer active center of heterojunctions. The electrochemical and spectroscopic tests demonstrated that BC enhanced the catalytic performance of the heterojunction by enhancing photocurrent, reducing fluorescence intensity, and facilitating separation of electron-hole pairs. The photocatalytic activity showed the Ag-Fe-BC (5:1:3) could degrade Rhodamine B (20 mg/L) by up to 92.7%, which was 3.35 times higher than Ag₃PO₄/α-Fe₂O₃. Tetracycline and ciprofloxacin (20 mg/L) were degraded efficiently by 58.3% and 79.4% within 2 h, respectively. Electron paramagnetic resonance and scavenging experiments confirmed the major reactive oxygen species (ROS) consisted of singlet oxygen (¹O₂) and superoxide (·O₂⁻). Excellent RhB adsorption and electrons capturing capacity of BC facilitated electron-hole pairs separation and ROS transferring to target organics followed by elevated degradation. Thus, a facile method was proposed to synthesize a highly efficient visible-light responsive photocatalyst for degradation of various organics in water.
显示更多 [+] 显示较少 [-]Impact of microplastics on the foraging, photosynthesis and digestive systems of submerged carnivorous macrophytes under low and high nutrient concentrations 全文
2022
Yu, Hongwei | Qi, Weixiao | Cao, Xiaofeng | Wang, Yajun | Li, Yang | Xu, Yan | Zhang, Xiaoliang | Peng, Jianfeng | Qu, Jiuhui
The prevalence of microplastics in marine, terrestrial, and freshwater habitats has raised concerns about their availability and risks to organisms. However, the effects of plastic debris on aquatic plants remain largely unknown and have hardly been studied, despite the importance of these plants in freshwater ecosystems. In this study, we exposed the aquatic carnivorous plant Utricularia vulgaris to polystyrene microplastics (10 and 80 mg/L) combined with different nutrient concentrations and then assessed their effects on the growth rate, photosynthesis, oxidative stress, and trap-associated microbial community of U. vulgaris. The impact of microplastic accumulation in the traps (or “bladders”) of U. vulgaris was investigated using confocal microscopy. The results showed that the relative growth rate, shoot length, chlorophyll content, Fv/Fm, and ascorbate peroxidase enzyme activity of U. vulgaris decreased in 80 mg/L microplastics, whereas the superoxide dismutase and peroxidase enzyme activities increased significantly. The presence of microplastics led to higher malondialdehyde and hydrogen peroxide contents. However, high nutrient concentrations can compensate for the reduced growth performance of U. vulgaris in microplastic-exposure treatments. The microplastic treatments significantly altered the trap-associated microbial community structure and diversity. The results of this study revealed that beside adsorption, carnivorous plants can accumulate microplastics in their digestive organs.
显示更多 [+] 显示较少 [-]Effects of heavy metals stress on chicken manures composting via the perspective of microbial community feedback 全文
2022
Chen, Xiaomeng | Du, Zhuang | Guo, Tong | Wu, Junqiu | Wang, Bo | Wei, Zimin | Jia, Liming | Kang, Kejia
Heavy metal pollution was the main risk during livestock manures composting, in which microorganisms played a vital role. However, response strategies of microbial community to heavy metals stress (HMS) remained largely unclear. Therefore, the objective of this study was to reveal the ecological adaptation and counter-effect of bacterial community under HMS during chicken manures composting, and evaluating environmental implications of HMS on composting. The degradation of organic matters (more than 6.4%) and carbohydrate (more than 19.8%) were enhanced under intense HMS, suggesting that microorganisms could quickly adapt to the HMS to ensure smooth composting. Meanwhile, HMS increased keystone nodes and strengthened significant positive correlation relationships between genera (p < 0.05), indicating that bacteria resisted HMS through cooperating during composting. In addition, different bacterial groups performed various functions to cope with HMS. Specific bacterial groups responded to HMS, and certain groups regulated bacterial networks. Therefore, bacterial community had the extraordinary potential to deal with HMS and guarantee chicken manures composting even in the presence of high concentrations of heavy metals.
显示更多 [+] 显示较少 [-]Sulfur(IV) assisted oxidative removal of organic pollutants from source water 全文
2022
Truzsi, Alexandra | Elek, János | Fábián, István
The removal of organic pollutants presents a major challenge for drinking water treatment plants. The chemical oxygen demand (COD) is essentially the measure of oxidizable organic matter in source waters. In this study, we report that COD can efficiently be decreased by adding Fe(II)/Fe(III) and sulfite ion to the source water while purging it with air. In this process, oxygen is activated to oxidize the main constituents of COD, i.e. organic substrates, via the generation of reactive inorganic oxysulfur radical ions. In the end, the total amount of sulfur(IV) is converted to the non-toxic sulfate ion. It has been explored how the COD removal efficiency depends on the concentration of S(IV), the total concentration of iron species, the concentration ratio of Fe(II) and Fe(III), the purging rate and the contact time by using source water from a specific location (Királyhegyes, Hungary). The process has been optimized by applying the Response Surface Methodology (RSM). Under optimum conditions, the predicted and experimentally found COD removal efficiencies are in excellent agreement: 85.4% and 87.5%, respectively. The robustness of the process was tested by varying the optimum values of the parameters by ± 20%. It was demonstrated that the method is universally applicable because a remarkable decrease was achieved in COD, 62.0–88.5%, with source waters of various compositions acquired from 9 wells at other locations using the same conditions as in the case of Királyhegyes.
显示更多 [+] 显示较少 [-]Ultrafine particle exposure for bicycle commutes in rush and non-rush hour traffic: A repeated measures study in Copenhagen, Denmark 全文
2022
Bergmann, M.L. | Andersen, Z.J. | Amini, H. | Khan, J. | Lim, Y.H. | Loft, S. | Mehta, A. | Westendorp, R.G. | Cole-Hunter, T.
Ultrafine particles (UFP), harmful to human health, are emitted at high levels from motorized traffic. Bicycle commuting is increasingly encouraged to reduce traffic emissions and increase physical activity, but higher breathing rates increase inhaled UFP concentrations while in traffic. We assessed exposure to UFP while cycling along a fixed 8.5 km inner-city route in Copenhagen, on weekdays over six weeks (from September to October 2020), during morning and afternoon rush-hour, as well as morning non-rush-hour, traffic time periods starting from 07:45, 15:45, and 09:45 h, respectively. Continuous measurements were made (each second) of particle number concentration (PNC) and location. PNC levels were summarized and compared across time periods. We used generalized additive models to adjust for meteorological factors, weekdays and trends. A total of 61 laps were completed, during 28 days (∼20 per time period). Overall mean PNC was 18,149 pt/cm³ (range 256–999,560 pt/cm³) with no significant difference between morning rush-hour (18003 pt/cm³), afternoon rush-hour (17560 pt/cm³) and late morning commute (17560 pt/cm³) [p = 0.85]. There was substantial spatial variation of UFP exposure along the route with highest PNC levels measured at traffic intersections (∼38,000-42000 pt/cm³), multiple lane roads (∼38,000-40000 pt/cm³) and construction sites (∼44,000-51000 pt/cm³), while lowest levels were measured at smaller streets, areas with open built environment (∼12,000 pt/cm³), as well as at a bus-only zone (∼15,000 pt/cm³). UFP exposure in inner-city Copenhagen did not differ substantially when bicycling in either rush-hour or non-rush-hour, or morning or afternoon, traffic time periods. UFP exposure varied substantially spatially, with highest concentrations around intersections, multiple lane roads, and construction sites. This suggests that exposure to UFP is not necessarily reduced by avoiding rush-hours, but by avoiding sources of pollution along the bicycling route.
显示更多 [+] 显示较少 [-]Fate, source and mass budget of sedimentary microplastics in the Bohai Sea and the Yellow Sea 全文
2022
Zhang, Mingyu | Lin, Yan | Booth, Andy M. | Song, Xikun | Cui, Yaozong | Xia, Bin | Gu, Zhangjie | Li, Yifan | Liu, Fengjiao | Cai, Minggang
As reservoirs for pollutants transported via the Yangtze and Yellow Rivers, the Bohai Sea (BS) and Yellow Sea (YS) play an important role in transporting microplastics (MPs) to the Pacific Ocean. The fate, sources and mass budget of MPs in the BS and the YS were investigated by Pearson correlation, principal component analysis-multilinear regression analysis (PCA-MRLA) and a mass balance model to sedimentary MPs data. Average MP abundances were 137 and 119 items kg⁻¹ in the Bohai and Yellow Seas, respectively. MPs <1000 μm exhibited similar distribution patterns to total organic carbon and fine-grained sediments, while MPs >1000 μm were confined in the BS and exhibited a strong positive correlation with chlorophyll-a and polyethylene terephthalate, suggesting that larger MPs might deposit faster due to biofouling or when comprised of high density polymers. PCA-MLRA analysis indicated land-based inputs (packing materials, textile material and daily commodities) were dominant in the BS, while maritime activities (fishing and mariculture) were the main source of MPs in the YS. The mass balance model revealed that the total MP input and output to the BS and the YS was 3396.92 t yr⁻¹ and 3814.81 t yr⁻¹, respectively. The major input pathway of MPs to the BS and the YS were river discharge and air deposition, respectively. Notably, 94% of MPs in the BS and the YS were deposited to sediments. This study revealed that BS and YS sediments play an important role in preventing MPs from being further transported to the Pacific Ocean, thus more attention should be paid to local ecological risk assessment.
显示更多 [+] 显示较少 [-]Association of noise exposure, plasma microRNAs with arterial stiffness among Chinese workers 全文
2022
Wang, Dongming | Xiao, Yang | Li, Wenzhen | Feng, Xiaobing | Yi, Guilin | Chen, Zhenlong | Wu, Jie | Chen, Weihong
Long-term noise exposure is reported to damage cardiovascular system, but the relationship between occupational noise exposure and arterial stiffness (AS) and the underlying mechanism is still unclear. We aimed to investigate the association of occupational noise exposure with arterial stiffness (AS), and further explore the mediation roles of microRNAs (miRNAs). A total of 838 workers were recruited from two companies in Wuhan, Hubei, China. Cumulative occupational noise exposure (CNE) was assessed through noise level of job title and work years in occupational noise. The AS for the participants were evaluated using brachial-ankle pulse wave velocity (baPWV) measured by an oscillometric device. Each 1-unit increase in CNE levels was significantly associated with a 0.002 (95% confidence interval (CI) = 0.001–0.003) unit increase in ln-transformed values of baPWV. In the sex-specific analysis, the association was significant in males (β = 0.002, 95%CI = 0.001–0.003). Meanwhile, the risk of bilateral hearing loss at high frequency was significantly higher in the high-exposed group than non-exposed group (OR = 1.895, 95%CI = 1.024–3.508), and participants with bilateral hearing loss at high frequency had a significantly higher level of ln-transformed baPWV (β = 0.032, 95%CI = 0.003–0.061). Occupational noise exposure and AS were both negatively associated with plasma miR-92a-3p and miR-21–5p, and the two miRNAs mediated 15.0% and 16.8% of the association of occupational noise with AS (P < 0.05). Our findings suggest that occupational noise exposure is positively associated with AS, and plasma miR-92a-3p and miR-21–5p may partly mediate such association.
显示更多 [+] 显示较少 [-]Risk assessment and driving factors of trace metal(loid)s in soils of China 全文
2022
Sun, Jiaxun | Zhao, Menglu | Cai, Boya | Song, Xiaoyong | Tang, Rui | Huang, Xinmiao | Huang, Honghui | Huang, Jian | Fan, Zhengqiu
Recently, with the rapid development of China's economy, the pollution of trace metal(loid)s (TMs) in soils has become increasingly severe and attracted widespread attention. Based on 1,402 published papers from 2000 to 2021, this study aimed to analyze the pollution intensity, ecological risk and driving factors for eight TMs (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in Chinese soils. Results showed that the average concentrations of eight TMs in Chinese soils all exceeded background values, and the pollution of Cd and Hg was the most serious. Based on Principal component analysis of pollution intensity and ecological risk, the priority control TMs were identified for the heavily polluted provinces. The results of Geo-detector model suggested that Urban development factors contributed most to the TM accumulation in Chinese soils. Further, spatial analysis using bivariate Moran's I indicated that industrial activities contributed most to soil TM accumulation in the middle and lower reaches of the Yangtze River, while soil TM pollution in the southwest and northwest provinces was mainly caused by mining and metal smelting. This study investigated the relationship between soil TM pollution and anthropogenic activities, thus providing a scientific basis for controlling soil TM pollution at a large-scale level.
显示更多 [+] 显示较少 [-]