细化搜索
结果 1741-1750 的 7,990
Methane control of cadmium tolerance in alfalfa roots requires hydrogen sulfide
2021
Hydrogen sulfide (H₂S) is well known as a gaseous signal in response to heavy metal stress, while methane (CH₄), the most prevalent greenhouse gas, confers cadmium (Cd) tolerance. In this report, the causal link between CH₄ and H₂S controlling Cd tolerance in alfalfa (Medicago sativa) plants was assessed. Our results observed that the administration of CH₄ not only intensifies H₂S metabolism, but also attenuates Cd-triggered growth inhibition in alfalfa seedlings, which were parallel to the alleviated roles in the redox imbalance and cell death in root tissues. Above results were not observed in roots after the removal of endogenous H₂S, either in the presence of either hypotaurine (HT; a H₂S scavenger) or DL-propargylglycine (PAG; a H₂S biosynthesis inhibitor). Using in situ noninvasive microtest technology (NMT) and inductively coupled plasma mass spectroscopy (ICP-MS), subsequent results confirmed the participation of H₂S in CH₄-inhibited Cd influx and accumulation in roots, which could be explained by reestablishing glutathione (GSH) pool (reduced/oxidized GSH and homoglutathione) homeostasis and promoting antioxidant defence. Overall, our results clearly revealed that H₂S operates downstream of CH₄ enhancing tolerance against Cd stress, which are significant for both fundamental and applied plant biology.
显示更多 [+] 显示较少 [-]Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops
2021
Heavy metal pollution is a notable threat to agricultural production. Soil heavy metal pollution can cause potential ecological risk (ERI), and crop heavy metal pollution can cause human health risk (HRI). However, most previous studies partially focused on heavy metal pollution in soil or crop but often neglected the relationship between them. Actually, soil heavy metal can pollute crops to some extent, while not all heavy metal pollution in crops comes from soil. The inner relationship of pollution risk in soil-crop system is worth attention. In this study, we selected Ningbo as the study region and used sample data to assess both soil and crop heavy metal risks, in order to explore the differences between heavy metal contamination risks in soil and crops as well as the relationships between heavy metal contents in soil and crops. Our results showed that Hg was the most polluted heavy metal in soil, which led to the highest ecological risk in Jiangbei (Comprehensive ERI = 567) with the maximum ERI of Hg (430). However, As in crops contributed the most to health risk and caused the highest health risk in Fenghua (HRI = 10) with the largest contribution of 64.5%. Such differences of pollution risk assessment indicated that the contents of the same heavy metal were inconsistent in soil and crops. Our results further showed that the heavy metals in soil had the greatest influence on Zn in crops. Pb and Cr in soil had synergistic effects on the crop absorption of Zn, whereas As, Hg and Cu played antagonistic roles in the crop absorption of Zn. Our study confirms that heavy metals in soil would variously influence heavy metals in crops and the interaction of heavy metals is very important for pollution risk control, which have been largely ignored yet.
显示更多 [+] 显示较少 [-]Behavioral changes occur earlier than redox alterations in developing zebrafish exposed to Mancozeb
2021
Paganotto Leandro, Luana | Siqueira de Mello, Renata | da Costa- Silva, Dennis Guilherme | Medina Nunes, Mauro Eugênio | Rubin Lopes, Andressa | Kemmerich Martins, Illana | Posser, Thaís | Franco, Jeferson Luis
As agriculture expands to provide food and wellbeing to the world’s growing population, there is a simultaneous increasing concern about the use of agrochemicals, which can harm non-target organisms, mainly in the aquatic environment. The fungicide Mancozeb (MZ) has been used on a large-scale and is a potent inducer of oxidative stress. Therefore, there is an urgent need for the development of more sensitive biomarkers designed to earlier biomonitoring of this compound. Here we tested the hypothesis that behavioral changes induced by sublethal MZ concentrations would occur first as compared to biochemical oxidative stress markers. Embryos at 4 h post-fertilization (hpf) were exposed to Mancozeb at 5, 10 and 20 μg/L. Controls were kept in embryo water only. Behavioral and biochemical parameters were evaluated at 24, 28, 72, and 168 hpf after MZ exposure. The results showed that MZ significantly altered spontaneous movement, escape responses, swimming capacity, and exploratory behavior at all exposure times. However, changes in ROS steady-stead levels and the activity of antioxidant enzymes were observable only at 72 and 168 hpf. In conclusion, behavioral changes occurred earlier than biochemical alterations in zebrafish embryos exposed to MZ, highlighting the potential of behavioral biomarkers as sensitive tools for biomonitoring programs.
显示更多 [+] 显示较少 [-]Transcriptome analysis of the toxic mechanism of nanoplastics on growth, photosynthesis and oxidative stress of microalga Chlorella pyrenoidosa during chronic exposure
2021
Yang, Wenfeng | Gao, Pan | Ma, Guoyi | Huang, Jiayi | Wu, Yixiao | Wan, Liang | Ding, Huijun | Zhang, Weihao
The toxicity of nanoplastics to aquatic organisms has been widely studied in terms of biochemical indicators. However, there is little discussion about the underlying toxic mechanism of nanoplastics on microalgae. Therefore, the chronic effect of polystyrene (PS) nanoplastics (80 nm) on Chlorella pyrenoidosa was investigated, in terms of responses at the biochemical and molecular/omic level. It was surprising that both inhibitory and promoting effects of nanoplastcis on C. pyrenoidosa were found during chronic exposure. Before 13 days, the maximum growth inhibition rate was 7.55% during 10 mg/L PS nanoplastics treatment at 9 d. However, the inhibitory effect gradually weakened with the prolongation of exposure time. Interestingly, algal growth was promoted for 1–5 mg/L nanoplastics during 15–21 d exposure. Transcriptomic analysis explained that the inhibitory effect of nanoplastics could be attributed to suppressed gene expression of aminoacyl-tRNA synthetase that resulted in the reduced synthesis of related enzymes. The promotion phenomenon may be due to that C. pyrenoidosa defended against nanoplastics stress by promoting cell proliferation, regulating intracellular osmotic pressure, and accelerating the degradation of damaged proteins and organs. This study is conducive to provide theoretical basis for evaluating the actual hazard of nanoplastics to aquatic organisms.
显示更多 [+] 显示较少 [-]Valorization of synthetic textile waste using CO2 as a raw material in the catalytic pyrolysis process
2021
Kwon, Dohee | Yi, So-ra | Jung, Sungyup | Kwon, Eilhann E.
Since an invention of synthetic fibers (textiles), our life quality has been improved. However, the cumulative production and disposal of them have perceived as significant since they are not biodegradable and hard to be upcycled/recycled. From washing textiles, microplastics are released into the environment, which are regarded as emerging contaminants. As a means for source reduction of microplastics, this study proposed a rapid disposal platform for waste textiles (WTs), converting them into value-added products. To this end, catalytic pyrolysis of WT was studied. To offer more environmentally sound process, CO₂ was used as a raw material for WT pyrolysis. Thermal cracking of WT led to the production of syngas and CH₄ under the CO₂ environment. CO₂ resulted in additional CO production via gas phase reaction with volatile compounds evolved from pyrolysis of WT. To expedite the reaction kinetics for syngas formation, catalytic pyrolysis was done over Co-based catalyst. Comparing to non-catalytic pyrolysis, CO₂-assisted catalytic pyrolysis had 3- and 8-times higher production of H₂ and CO, respectively. This process also suppressed catalyst deactivation, converting more than 80 wt% of WT into syngas and CH₄. The more generation of CO from the use of CO₂ as a raw material offers an effective means to minimize the formations of harmful chemical species, such as benzene derivatives and polycyclic aromatic hydrocarbons.
显示更多 [+] 显示较少 [-]Air pollution and DNA methylation in adults: A systematic review and meta-analysis of observational studies
2021
Wu, Yuying | Qie, Ranran | Cheng, Min | Zeng, Yunhong | Huang, Shengbing | Guo, Chunmei | Zhou, Qionggui | Li, Quanman | Tian, Gang | Han, Minghui | Zhang, Yanyan | Wu, Xiaoyan | Li, Yang | Zhao, Yang | Yang, Xingjin | Feng, Yifei | Liu, Dechen | Qin, Pei | Hu, Dongsheng | Hu, Fulan | Xu, Lidan | Zhang, Ming
This systematic review and meta-analysis aimed to investigate the association between air pollution and DNA methylation in adults from published observational studies. PubMed, Web of Science and Embase databases were systematically searched for available studies on the association between air pollution and DNA methylation published up to March 9, 2021. Three DNA methylation approaches were considered: global methylation, candidate-gene, and epigenome-wide association studies (EWAS). Meta-analysis was used to summarize the combined estimates for the association between air pollutants and global DNA methylation levels. Heterogeneity was assessed with the Cochran Q test and quantified with the I² statistic. In total, 38 articles were included in this study: 16 using global methylation, 18 using candidate genes, and 11 using EWAS, with 7 studies using more than one approach. Meta-analysis revealed an imprecise but inverse association between exposure to PM₂.₅ and global DNA methylation (for each 10-μg/m³ PM₂.₅, combined estimate: 0.39; 95% confidence interval: 0.97 - 0.19). The candidate-gene results were consistent for the ERCC3 and SOX2 genes, suggesting hypermethylation in ERCC3 associated with benzene and that in SOX2 associated with PM₂.₅ exposure. EWAS identified 201 CpG sites and 148 differentially methylated regions that showed differential methylation associated with air pollution. Among the 307 genes investigated in 11 EWAS, a locus in nucleoredoxin gene was found to be positively associated with PM₂.₅ in two studies. Current meta-analysis indicates that PM₂.₅ is imprecisely and inversely associated with DNA methylation. The candidate-gene results consistently suggest hypermethylation in ERCC3 associated with benzene exposure and that in SOX2 associated with PM₂.₅ exposure. The Kyoto Encyclopedia of Genes and Genomes (KEGG) network analyses revealed that these genes were associated with African trypanosomiasis, Malaria, Antifolate resistance, Graft-versus-host disease, and so on. More evidence is needed to clarify the association between air pollution and DNA methylation.
显示更多 [+] 显示较少 [-]Absorption properties and forcing efficiency of light-absorbing water-soluble organic aerosols: Seasonal and spatial variability
2021
Choudhary, Vikram | Rajput, Prashant | Gupta, Tarun
Light-absorbing organic aerosols, also known as brown carbon (BrC), enhance the warming effect of the Earth’s atmosphere. The seasonal and spatial variability of BrC absorption properties is poorly constrained and accounted for in the climate models resulting in a substantial underestimation of their radiative forcing estimates. This study reports seasonal and spatial variability of absorption properties and simple forcing efficiency of light-absorbing water-soluble organic carbon (WSOC, SFEWSOC) by utilizing current and previous field-based measurements reported mostly from Asia along with a few observations from Europe, the USA, and the Amazon rainforest. The absorption coefficient of WSOC at 365 nm (bₐbₛ₋₃₆₅) and the concentrations of carbonaceous species at Kanpur were about an order of magnitude higher during winter than in the monsoon season owing to differences in the boundary layer height, active sources and their strengths, and amount of seasonal wet precipitation. The WSOC aerosols during winter exhibited ∼1.6 times higher light absorption capacity than in the monsoon season at Kanpur site. The assessment of spatial variability of the imaginary component of the refractive index spectrum (kλ) across South Asia has revealed that it varies from ∼1 to 2 orders of magnitude and light absorption capacity of WSOC ranges from 3 to 21 W/g. The light absorption capacity of WSOC aerosols exhibited less spatial variability across East Asia (5–13 W/g) when compared to that in the South Asia. The photochemical aging of WSOC aerosols, indicated by the enhancement in WSOC/OC ratio, was linked to degradation in their light absorption capacity, whereas the absorption Ångström exponent (AAE) remained unaffected. This study recommends the adoption of refined climate models where sampling regime specific absorption properties are calculated separately, such that these inputs can better constrain the model estimates of the global effects of BrC.
显示更多 [+] 显示较少 [-]Life stage and endpoint sensitivity differences of fathead minnow (Pimephales promelas) to chemicals with various modes of action
2021
Wang, Yolina Yu Lin | Li, Ping | Ohore, Okugbe Ebiotubo | Wang, Yuwen | Zhang, Dainan | Bai, Yunfei | Su, Tenghui | Yau, Ching | Jin, Xiaowei | Liu, Wenhua | Wang, Zhen
Fish Embryo Acute Toxicity (FET) test was proposed as an alternative to the traditional test methods using larval or adult fish. However, whether fathead minnow (Pimephales promelas) embryo is appropriate for FET remains uncertain. In the present study, ecological threshold of toxicological concern (ecoTTC) values and uncertainty factors (UFs) for each Verhaar et al. category in P. promelas were identified by employing probabilistic ecological risk assessment (PERA) approach with chemical toxicity distributions (CTDs). The sensitivity among different life stages and toxicity among different mode of actions (MOAs) classes were comprehensively compared by CTD comparisons. The results showed that embryo exhibited the less or similar sensitivity compared to larva or adult for Verhaar et al. MOA classes (1-4) while adults were more sensitive, followed by embryo than larval for non-classified chemicals. Considering growth effect as endpoint to class 1, class 3, and non-classified chemicals on P. promelas embryo and larva was more sensitive than mortality. Non-classified chemicals especially inorganic compounds were most toxic to P. promelas embryo for the four concerned Verharr et al. MOA-specific chemical classes. This study also derived uncertainty factors (UFs) as 26.5 (9.8, 109) for embryo-to-larva, 6.26 (3.94, 11.0) for embryo-to-adult, 15.6 (10.1, 36.1) for mortality-to-growth, and 3.03 (1.86, 7.08) for mortality-to-reproduction, which can be applied for extrapolations of life stage-to-life stage and effect-to-effect to reduce the underestimating and overestimating risk by the use of default UF such as 10, 100 or 1000. Our findings are vital for feasibility of FET test of P. promelas for ecotoxicity testing and ecological risk assessment for chemicals with different MOAs.
显示更多 [+] 显示较少 [-]Interactions between microplastics/nanoplastics and vascular plants
2021
Yin, Lingshi | Wen, Xiaofeng | Huang, Danlian | Du, Chunyan | Deng, Rui | Zhou, Zhenyu | Tao, Jiaxi | Li, Ruijin | Zhou, Wei | Wang, Zeyu | Chen, Haojie
Microplastics and nanoplastics are distributed in the environments universally. The interrelationship between vascular plants and micro/nanoplastics began to attract attention in recent years. Based on the relevant literatures collected from various databases, this review focuses on two topics: 1) the effect of vascular plants on the fate of micro/nanoplastics; 2) the effects of micro/nanoplastics on vascular plants. The review of the available studies reveals that vascular plants can act as sinks for microplastics and nanoplastics as their surfaces can adsorb these plastics; moreover, nanoplastics can be internalized by plants. Plastics on the surfaces and in the interiors of vascular plants can cause various phytotoxicity effects, including impacts on growth, photosynthesis, and oxidative stress. Furthermore, the results and mechanisms of phytotoxicity effects caused by microplastics or nanoplastics can be very different. However, knowledge gaps still exist in the relationships between micro/nanoplastics and vascular plants based on the analysis of available studies; thus, potential subjects for future studies were proposed, including the fates, analysis methods, influencing factors, mechanisms of phytotoxicity, and further influences of microplastics and nanoplastics in the vascular plant ecosystems. This study presents a review of micro/nanoplastics–vascular plant research and reaches a basis for future research.
显示更多 [+] 显示较少 [-]BC and 1,4NQ-BC up-regulate the cytokines and enhance IL-33 expression in LPS pretreatment of human bronchial epithelial cells☆
2021
Ge, Jianhong | Chu, Hongqian | Xiao, Qianqian | Hao, Weidong | Shang, Jing | Zhu, Tong | Sun, Zhaogang | Wei, Xuetao
Black carbon (BC) reacts with different substances to form secondary pollutants called aged black carbon, which causes inflammation and lung damage. BC and aged BC may enhance IL-33 in vivo, which may be derived from macrophages. The pro-inflammatory effect of IL-33 makes it essential to determine the source of IL-33, so it guides us to explore how to alleviate lung injury. In this study, a human bronchial epithelial cell line of 16HBE cells was selected, and aged BC (1,4-NQ coated BC and ozone oxidized BC) was used. We found that both BC and aged BC were able to up-regulate the mRNA expression of IL-1β, IL-6, and IL-8 except IL-33. However, the Mitogen-activated protein kinases (MAPKs) and Phosphatidylinositol 3-kinase (PI3K)/Protein kinase B (AKTs) pathways remained inactive. After pretreatment with Lipopolysaccharide (LPS), IL-33 mRNA expression was significantly increased in 16HBE cells and MAPKs and PI3K/AKT were activated. These results suggested that MAPKs and PI3K/AKT pathways were involved in the elevation of IL-33. Furthermore, epithelial cells are unlikely to be the source of lung inflammation caused by elevated IL-33 in BC and aged BC.
显示更多 [+] 显示较少 [-]