细化搜索
结果 1771-1780 的 6,473
Effect of temperature on the sulfur fate during hydrothermal carbonization of sewage sludge
2020
Wang, Zhexian | Zhai, Yunbo | Wang, Tengfei | Peng, Chuan | Li, Shanhong | Wang, Bei | Liu, Xiangmin | Li, Caiting
To understand the effect of reaction temperature on sulfur during hydrothermal carbonization (HTC) of sewage sludge (SS), seven group of temperature (180–300 °C) were chosen to investigate the distributions and evolution of sulfur-containing compounds in hydrochar and the liquid products. Elemental analysis, X-ray photoelectron spectroscopy (XPS), and X-Ray powder diffraction (XRD) were used to characterize the distribution of sulfur in hydrochar. The concentrations of sulfate ions and sulfide were determined in the liquid sample. The experimental results showed that as the temperature increased, the O/C ratio decreased because of the improved carbonization degree of SS. After hydrothermal carbonization, 90% of the sulfur in SS remained in hydrochar. As the temperature increased, the amount of sulfur in the liquid, mainly in the form of sulfate ions, tended to decrease. However, the experimental results for the gas phase were the opposite of the liquid phase.
显示更多 [+] 显示较少 [-]Effects of combustion condition and biomass type on the light absorption of fine organic aerosols from fresh biomass burning emissions over Korea
2020
Park, Seungshik | Yu, Geun-Hye | Bae, Min-Suk
In this study, the light absorption properties of fine organic aerosols from the burning emissions of four biomass materials were examined using UV-spectrophotometry and Aethalometer-measurements, respectively. For wood chips and palm trees, the burning experiments were carried out with different combustion temperatures (200, 250, and 300 οC) in an adjustable, electrically heated combustor. The light absorptions of water and methanol extracts of aerosols, and smoke particles showed strong spectral dependence on the burning emissions of all biomass materials. However, the burning aerosols of wood chips showed stronger absorption than those of the other biomass burning (BB) emissions. For the burning aerosols of wood chips and palm trees, organic carbon/elemental carbon (OC/EC) decreased as the combustion temperature increased from 200 to 300 °C. Absorption Ångström exponent (AAE) values tended to decrease when combustion temperature increased for smoke aerosols and methanol extracts in smoke samples. The mass absorption efficiency at 365 nm (MAE₃₆₅, m² g⁻¹∙C⁻¹) of water- and methanol-extractable OC fractions was highest in wood chip burning smoke samples. MAE₃₆₅ values of methanol extracts for rice straw, pine needles, wood chips, and palm trees burning emission samples were 1.35, 0.92, 2.36–3.37, and 0.86–1.42, respectively. For wood chip and palm tree burning emissions, AAE₃₂₀–₄₃₀ₙₘ values of methanol extracts were strongly correlated with OC/EC (i.e., combustion temperature) with slopes of 0.11 (p < 0.001) and 0.02 (p < 0.001), and R² values of 0.87 and 0.74, respectively. Moreover, a linear regression between MAE₃₆₅ of methanol extractable OC and OC/EC showed slopes of −0.05 (p < 0.001) and −0.004 (p < 0.001) and R² of 0.72 and 0.74, respectively. The results of this study clearly demonstrate that burning condition and biomass type influence the light absorption properties of organic aerosols from BB emissions.
显示更多 [+] 显示较少 [-]Feasible and effective control strategies on extreme emissions of chlorinated persistent organic pollutants during the start-up processes of municipal solid waste incinerators
2020
Cheruiyot, Nicholas Kiprotich | Yang, Hsi-Hsien | Wang, Lin-Chi | Lin, Chun-Chi
A typical two-day start-up of municipal solid waste incinerators (MSWIs) can yield polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) and polychlorinated biphenyl (PCB) emission quantities around 10 times higher than those from an entire year of normal operations, as measured in this study. Thus, we tested specific control strategies for inhibiting the formation of chlorinated persistent organic pollutants (Cl-POPs), namely, extensively cleaning the ash accumulated beneath the furnace bed of the combustion chamber and deposited on the walls of the superheater and economizer and shortening the residence time of the flue gas in the optimal temperature window for Cl-POP formation. Also, we advanced the injection times of the activated carbon and lime slurry to lower Cl-POP emissions during start-up. Our findings show that these strategies were highly effective and reduced the Cl-POP emissions by > 98%, most of which (96.4–98.2%) was attributable to inhibiting formation. In summary, the proposed control strategies require no modifications to existing air pollution control devices, have little influence on operational cost, and are effective and feasible for the majority of MSWIs.
显示更多 [+] 显示较少 [-]Lobsters with pre-existing damage to their mechanosensory statocyst organs do not incur further damage from exposure to seismic air gun signals
2020
Day, Ryan D. | Fitzgibbon, Quinn P. | McCauley, Robert D. | Hartmann, Klaas | Semmens, Jayson M.
Staotcysts, the mechanosensory organs common to many marine invertebrates, have shown sensitivity to aquatic noise. Previously, rock lobsters (Jasus edwardsii) from a remote site with little exposure to anthropogenic noise incurred persistent damage to the statocyst and righting reflex following exposure to seismic air gun signals. Here, J. edwardsii collected from a site subject to high levels of anthropogenic noise were exposed to an equivalent seismic air gun signal regime as the previous study of noise-naïve lobsters. Following exposure, both control and exposed treatments were found to have damage to the statocyst equivalent to that of noise-naïve lobsters following seismic exposure, which led to the conclusion that the damage was pre-existing and not exacerbated by seismic exposure. The source of the damage in the lobsters in this study could not be ascertained, but the soundscape comparisons of the collection sites showed that the noisy site had a 5–10 dB greater level of noise, equivalent to a 3–10 times greater intensity, in the 10–700 Hz range than was found at the remote collection site. In addition to the lack of further damage following seismic exposure, no disruption to the righting reflex was observed. Indeed, compared to the noise naïve lobsters, the lobsters here demonstrated an ability to cope with or adapt to the mechanosensory damage, indicating a need for better understanding of the ecological impacts of the damage caused by low frequency noise on marine organisms. More broadly, this study raises historical exposure to noise as a previously unrecognised but vitally important consideration for studies of aquatic noise.
显示更多 [+] 显示较少 [-]Urban noise restricts, fragments, and lightens sleep in Australian magpies
2020
Connelly, Farley | Johnsson, Robin D. | Aulsebrook, Anne E. | Mulder, Raoul A. | Hall, Michelle L. | Vyssotski, Alexei L. | Lesku, John A.
Urban areas are inherently noisy, and this noise can disrupt biological processes as diverse as communication, migration, and reproduction. We investigated how exposure to urban noise affects sleep, a process critical to optimal biological functioning, in Australian magpies (Cracticus tibicen). Eight magpies experimentally exposed to noise in captivity for 24-h spent more time awake, and less time in non-rapid eye movement (non-REM) and REM sleep at night than under quiet conditions. Sleep was also fragmented, with more frequent interruptions by wakefulness, shorter sleep episode durations, and less intense non-REM sleep. REM sleep was particularly sensitive to urban noise. Following exposure to noise, magpies recovered lost sleep by engaging in more, and more intense, non-REM sleep. In contrast, REM sleep showed no rebound. This might indicate a long-term cost to REM sleep loss mediated by noise, or contest hypotheses regarding the functional value of this state. Overall, urban noise has extensive, disruptive impacts on sleep composition, architecture, and intensity in magpies. Future work should consider whether noise-induced sleep restriction and fragmentation have long-term consequences.
显示更多 [+] 显示较少 [-]Natural molecule coatings modify the fate of cerium dioxide nanoparticles in water and their ecotoxicity to Daphnia magna
2020
Villa, Sara | Maggioni, Daniela | Hamza, Hady | Di Nica, Valeria | Magni, Stefano | Morosetti, Bianca | Parenti, Camilla Carla | Finizio, Antonio | Binelli, Andrea | Della Torre, Camilla
The ongoing development of nanotechnology has raised concerns regarding the potential risk of nanoparticles (NPs) to the environment, particularly aquatic ecosystems. A relevant aspect that drives NP toxicity is represented by the abiotic and biotic processes occurring in natural matrices that modify NP properties, ultimately affecting their interactions with biological targets. Therefore, the objective of this study was to perform an ecotoxicological evaluation of CeO₂NPs with different surface modifications representative of NP bio-interactions with molecules naturally occurring in the water environment, to identify the role of biomolecule coatings on nanoceria toxicity to aquatic organisms. Ad hoc synthesis of CeO₂NPs with different coating agents, such as Alginate and Chitosan, was performed. The ecotoxicity of the coated CeO₂NPs was assessed on the marine bacteria Aliivibrio fischeri, through the Microtox® assay, and with the freshwater crustacean Daphnia magna. Daphnids at the age of 8 days were exposed for 48 h, and several toxicity endpoints were evaluated, from the molecular level to the entire organism. Specifically, we applied a suite of biomarkers of oxidative stress and neurotoxicity and assessed the effects on behaviour through the evaluation of swimming performance. The different coatings affected the hydrodynamic behaviour and colloidal stability of the CeO₂NPs in exposure media. In tap water, NPs coated with Chitosan derivative were more stable, while the coating with Alginate enhanced the aggregation and sedimentation rate. The coatings also significantly influenced the toxic effects of CeO₂NPs. Specifically, in D. magna the CeO₂NPs coated with Alginate triggered oxidative stress, while behavioural assays showed that CeO₂NPs coated with Chitosan induced hyperactivity. Our findings emphasize the role of environmental modification in determining the NP effects on aquatic organisms.
显示更多 [+] 显示较少 [-]Spatiotemporal variability, source apportionment, and acid-neutralizing capacity of atmospheric wet base-cation deposition in China
2020
Zhang, Qiongyu | Wang, Qiufeng | Zhu, Jianxing | Xu, Li | Chen, Zhi | Xiao, Jingfeng | He, Nianpeng
Atmospheric wet deposition of base cations (BCs) plays a significant role in providing plant nutrients and buffering acidification. However, the temporal dynamic of wet BC deposition in China during the past two decades remain unclear. Here, we used long-term monitoring and literature data since 2000 to assess the temporal dynamics (seasonal and inter-annual variation), spatial patterns, main influencing factors, source apportionment, and capacity to neutralize the acidity of wet BC depositions at site, regional, and national scales. The results showed that total wet deposition of BCs was, on average, 2.12 keq ha⁻¹ yr⁻¹, where Ca²⁺ accounted for 65.57% of the total deposition, followed by Na⁺ (13.21%), Mg²⁺ (13.68%), and K⁺ (7.55%). Qinghai-Tibet had significantly lower BC deposition fluxes than northern, southern, and central China, as well as Inner Mongolia. Exchangeable BCs in soil, PM₁₀ in the atmosphere, energy consumption, and cement production are significantly related to wet BC deposition, which account for 79.17% of the variation in the spatial deposition of BC. Influenced by the strategies to control acid rain and particulate matter in China, interannual variations showed a stabilization trend after a continuous decline from 2000 to 2017, which can be explained by inter-annual changes in PM₁₀, energy consumption and cement production. Statistical methods confirmed that 45.95% of wet BC deposition was derived from crustal contributions, 27.78% from sea salt sources, and 26.27% from anthropogenic sources. Furthermore, we found that wet deposition of BCs neutralized 84.85% of the acidity due to NO₃⁻ and SO₄²⁻ depositions. Under the emissions reduction strategy, there has been a decrease in the deposition of BC. However, SO₄²⁻ and NO₃⁻ depositions decreased faster than BC deposition, which buffered a higher proportion of acidic depositions. Our findings contribute to an improved understanding of wet BC deposition in China, an evaluation of their capacity to neutralize acidity, and important parameters for acidification models.
显示更多 [+] 显示较少 [-]Experimental and theoretical insights into kinetics and mechanisms of hydroxyl and sulfate radicals-mediated degradation of sulfamethoxazole: Similarities and differences
2020
Gao, Lingwei | Mao, Qiming | Luo, Shuang | Cao, Linying | Xie, Xiande | Yang, Yuan | Deng, Yunfeng | Wei, Zongsu
Hydroxyl radical (•OH)- and sulfate radical (▪)-based advanced oxidation technologies (AOTs) have been proven an effective method to remove antibiotics in wastewater treatment plants (WWTPs). This study aims to gain insights into kinetics and mechanisms of neutral sulfamethoxazole (SMX) degradation, a representative antibiotic, by •OH and ▪ using an experimental and theoretical approach. First, the second-order rate constants (k) of SMX with •OH and ▪ were determined to be (7.27 ± 0.43) × 10⁹ and (2.98 ± 0.32) × 10⁹ M⁻¹ s⁻¹ in UV/H₂O₂ and UV/persulfate (UV/PS) systems, respectively. The following theoretical calculations at the M06–2X level of theory revealed that addition of radicals to the benzene ring is the most favorable first-step reaction for both •OH and ▪, but that ▪ exhibits higher energy barriers and selectivity than •OH due to steric hindrance. We further analyzed subsequent reactions and, interestingly, our findings closely corroborated HOMO/LUMO distributions of SMX to the oxidation pathways. Finally, the estimation of energy consumption for UV alone, •OH–, and ▪–mediated oxidation processes was compared. These comparative results, for the first time, provide insights into the similarities and differences of degradation of SMX by •OH/▪ at the molecular level and can help improve antibiotics removal using radical based AOTs in WWTPs.
显示更多 [+] 显示较少 [-]Ecotoxicity of polystyrene microplastics to submerged carnivorous Utricularia vulgaris plants in freshwater ecosystems
2020
Yu, Hongwei | Zhang, Xiaoliang | Hu, Jingwen | Peng, Jianfeng | Qu, Jiuhui
Much attention is currently paid to microplastic (MP) pollution, particularly in marine systems. There is increasing concern regarding the potential toxicity of MPs to organisms at the physiological and morphological levels. However, little is known about the impact of MPs on aquatic life, despite their ubiquitous presence in freshwater ecosystems. In this study, the aquatic plant Utricularia vulgaris was exposed to 1, 2 and 5 μm polystyrene fluorescent MP particles at concentrations of 15, 70 and 140 mg/L for 7 days. The toxic effects of MPs on the growth rate and morphological and physiological characteristics of U. vulgaris were assessed. The results showed that the relative growth rates and the functional traits of leaves (morphological and photosynthetic) were significantly inhibited at a high concentration of MP particles (140 mg/L) when compared to the control group. The impacts on growth performance were likely due to bioaccumulation of MPs in the bladders, as shown by confocal microscopy. Furthermore, the antioxidative enzyme activities showed that high concentrations of MPs induce high ecotoxicity and oxidative damage to U. vulgaris. Thus, U. vulgaris has the potential to be an excellent bioindicator of MP pollution in freshwater ecosystems and should further be applied in ecological risk assessments of the effects of MPs on higher aquatic plants.
显示更多 [+] 显示较少 [-]Responses of soil and earthworm gut bacterial communities to heavy metal contamination
2020
Liu, Peng | Yang, Yang | Li, Mei
The large accumulation of heavy metals in the soil surrounding steel factories has become a severe environmental problem. However, few studies have focused on how the earthworm gut microbiota responds to heavy metals in the soil. This study used research sites at a steel factory in Nanjing, China, to investigate how the soil bacterial community and earthworm gut microbiota respond differently to heavy metal contamination using Illumina high-throughput sequencing targeting 16S rRNA genes. The bacterial community of earthworm guts showed a distinct structure compared with that of the soil, featuring a higher relative abundance of Proteobacteria (45.7%) and Bacteroidetes (18.8%). The bacterial community in the earthworm gut appeared more susceptible to heavy metal contamination compared with the soil community. For example, we identified 38 OTUs (Operational taxonomic units) significantly influenced by contamination among 186 abundant OTUs in the soil, whereas 63 out of the 127 abundant OTUs in the earthworm gut were altered significantly under contamination. This susceptibility may be partly explained by the lower alpha diversity and distinct microbial interactions in the gut. In addition, the accumulation of heavy metals also stimulated the growth of potential plant growth promoting bacteria (PGPB) in the earthworm gut, especially those related to indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid deaminase (ACCD) production, which may potentially benefit the phyto-remediation of heavy metals. These results contribute to our understanding of the soil biota and its interactions under heavy metal contamination and may provide further insights into the phyto-remediation of metal-contaminated soil.
显示更多 [+] 显示较少 [-]