细化搜索
结果 1771-1780 的 6,560
Is obesity the missing link between COVID-19 severity and air pollution? 全文
2020
Lubrano, Carla | Risi, Renata | Masi, Davide | Gnessi, Lucio | Colao, Annamaria
In the previous publication “Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy?” Conticini et al. hypothesized that the surplus of lethality of the novel SARS-CoV-2 in Northern Italy may be at least in part explained by the evidence of highest pollution reported in this area, as both severe COVID-19 and smog exposure are correlated to an innate immune system hyper-activation with subsequent lung inflammation and injury. Since this hypothesis alone does not fully explain why specific subgroups of patients are at major risk, we hypothesized that obesity may be one of the links between COVID-19 severity and high level of air pollution. First, obesity is a predisposing factor for SARS-Cov-2 infection and worse COVID-19 outcomes, and unequivocal evidence demonstrated that fat mass excess is independently associated with several pulmonary diseases and lung inflammation. Moreover, it has been shown that obesity may intensify the detrimental effects of air pollution on the lungs, and this is not surprising if we consider that these conditions share an excessive activation of the immune system and a lung inflammatory infiltrate. Finally, fat mass excess has also been speculated to be itself a consequence of air pollutants exposure, which has been proved to induce metabolic disruption and weight gain in murine models. In conclusion, although many variables must be taken into account in the analysis of the pandemic, our observations suggest that obesity may act as effect modifier of smog-induced lung-injury, and the concomitant presence of these two factors could better explain the higher virulence, faster spread and greater mortality of SARS-CoV-2 in Northern Italy compared to the rest of the country.
显示更多 [+] 显示较少 [-]Long-term exposure to outdoor and household air pollution and blood pressure in the Prospective Urban and Rural Epidemiological (PURE) study 全文
2020
Arku, Raphael E. | Bräuer, Michael | Ahmed, Suad H. | AlHabib, Khalid F. | Avezum, Alvaro | Bo, Jian | Choudhury, Tarzia | Dans, Antonio ML. | Gupta, Rajiv | Iqbal, Romaina | Ismail, Noorhassim | Kelishadi, Roya | Khatib, Rasha | Koon, Teo | Kumar, Rajesh | Lanas, Fernando | Lear, Scott A. | Wei, Li | Lopez-Jaramillo, Patricio | Mohan, Viswanathan | Poirier, Paul | Puoane, Thandi | Rangarajan, Sumathy | Rosengren, Annika | Soman, Biju | Caklili, Ozge Telci | Yang, Shunyun | Yeates, Karen | Yin, Lu | Yusoff, Khalid | Zatoński, Tomasz | Yūsuf, Sālim | Hystad, Perry
Exposure to air pollution has been linked to elevated blood pressure (BP) and hypertension, but most research has focused on short-term (hours, days, or months) exposures at relatively low concentrations. We examined the associations between long-term (3-year average) concentrations of outdoor PM₂.₅ and household air pollution (HAP) from cooking with solid fuels with BP and hypertension in the Prospective Urban and Rural Epidemiology (PURE) study. Outdoor PM₂.₅ exposures were estimated at year of enrollment for 137,809 adults aged 35–70 years from 640 urban and rural communities in 21 countries using satellite and ground-based methods. Primary use of solid fuel for cooking was used as an indicator of HAP exposure, with analyses restricted to rural participants (n = 43,313) in 27 study centers in 10 countries. BP was measured following a standardized procedure and associations with air pollution examined with mixed-effect regression models, after adjustment for a comprehensive set of potential confounding factors. Baseline outdoor PM₂.₅ exposure ranged from 3 to 97 μg/m³ across study communities and was associated with an increased odds ratio (OR) of 1.04 (95% CI: 1.01, 1.07) for hypertension, per 10 μg/m³ increase in concentration. This association demonstrated non-linearity and was strongest for the fourth (PM₂.₅ > 62 μg/m³) compared to the first (PM₂.₅ < 14 μg/m³) quartiles (OR = 1.36, 95% CI: 1.10, 1.69). Similar non-linear patterns were observed for systolic BP (β = 2.15 mmHg, 95% CI: −0.59, 4.89) and diastolic BP (β = 1.35, 95% CI: −0.20, 2.89), while there was no overall increase in ORs across the full exposure distribution. Individuals who used solid fuels for cooking had lower BP measures compared to clean fuel users (e.g. 34% of solid fuels users compared to 42% of clean fuel users had hypertension), and even in fully adjusted models had slightly decreased odds of hypertension (OR = 0.93; 95% CI: 0.88, 0.99) and reductions in systolic (−0.51 mmHg; 95% CI: −0.99, −0.03) and diastolic (−0.46 mmHg; 95% CI: −0.75, −0.18) BP. In this large international multi-center study, chronic exposures to outdoor PM₂.₅ was associated with increased BP and hypertension while there were small inverse associations with HAP.
显示更多 [+] 显示较少 [-]Adding a complex microbial agent twice to the composting of laying-hen manure promoted doxycycline degradation with a low risk on spreading tetracycline resistance genes 全文
2020
Liang, Jiadi | Jin, Yiman | Wen, Xin | Mi, Jiandui | Wu, Yinbao
Poultry manure is a reservoir for antibiotics and antibiotic resistance genes and composting is an effective biological treatment for manure. This study explored the effect of using two methods of adding a complex microbial agent to the composting of laying-hen manure on doxycycline degradation and tetracycline resistance genes elimination. The results showed that incorporating a complex microbial agent at 0.8% (w/w) on the 0ᵗʰ and 11th day (group MT2) effectively degraded doxycycline with a final degradation rate of 46.83 ± 0.55%. The half-life of doxycycline in this group was 21.90 ± 0.00 days and was significantly lower than that of group MT1 (1.6% (w/w) complex microbial agent added on the 0ᵗʰ day) and group DT (compost without complex microbial agent). But there was no significant difference in the final degradation rate of doxycycline between group DT and group MT1. The addictive with the complex microbial agent changed the microbial community structure. Bacteroidetes, Firmicutes and Proteobacteria were the dominant phyla during composting. Aerococcus, Desemzia, Facklamia, Lactobacillus, Streptococcus, and Trichococcus were the bacteria related to the degradation of doxycycline. Moreover, the incorporation of a complex microbial agent could decrease the risk on spreading tetracycline resistance genes. The single addition promoted the elimination of tetM, whose possible hosts were Enterococcus, Lactobacillus, Staphylococcus, and Trichococcus. Adding the complex microbial agent twice promoted the elimination of tetX, which was related to the low abundance of Chryseobacterium, Flavobacterium and Neptunomonas in group MT2. Redundancy analysis showed that the bacterial community, residual doxycycline and physiochemical properties have a potential effect on the variation in tetracycline resistance genes levels. Overall, adding the complex microbial agent twice is an effective measure to degrade doxycycline.
显示更多 [+] 显示较少 [-]Impact of wastewater effluent pollution on stream functioning: A whole-ecosystem manipulation experiment 全文
2020
Pereda, Olatz | Solagaistua, Libe | Atristain, Miren | de Guzmán, Ioar | Larrañaga, Aitor | von Schiller, Daniel | Elosegi, Arturo
The ecological effects of wastewater treatment plant (WWTP) effluents on stream ecosystems cause growing concern. However, it is difficult to assess these effects as most streams receiving WWTP effluents are also affected by other stressors. We performed a whole-ecosystem manipulation experiment following a BACI design (Before-After/Control-Impact) in order to exclude the influence of other potentially confounding factors. We diverted part of the effluent of a large tertiary urban WWTP into a small, unpolluted stream, and studied its effects on ecosystem structure and functioning over two years (i.e., one year before and one year after the effluent diversion). Although highly diluted (final concentration in the receiving stream averaged 3%), the effluent promoted biofilm chlorophyll-a and biomass (2.3 and 2.1 times, respectively), exo-enzymatic activities (phosphatase 2.2 and glucosidase 4.2 times) and invertebrate-mediated organic matter decomposition (1.4 times), but reduced phosphorus uptake capacity of the epilithic biofilm down to 0.5 of the initial values. Biofilm metabolism, reach-scale nutrient uptake and microbially-mediated organic matter decomposition were not affected. Our results indicate that even well treated and highly diluted WWTP effluents can also affect the structure of the biofilm community and stream ecosystem functioning.
显示更多 [+] 显示较少 [-]Polystyrene microplastics cause cardiac fibrosis by activating Wnt/β-catenin signaling pathway and promoting cardiomyocyte apoptosis in rats 全文
2020
Li, Zekang | Zhu, Shuxiang | Liu, Qian | Wei, Jialiu | Jin, Yinchuan | Wang, Xifeng | Zhang, Lianshuang
Microplastics (MPs) are new persistent organic pollutants derived from the degradation of plastics. They can accumulate along the food chain and enter the human body through oral administration, inhalation and dermal exposure. To identify the impact of Polystyrene (PS) MPs on the cardiovascular system and the underlying toxicological mechanism, 32 male Wister rats were divided into control group and three model groups, which were exposed to 0.5 μm PS MPs at 0.5, 5 and 50 mg/L for 90 days. Our results suggested that PS MPs exposure increased Troponin I and creatine kinase-MB (CK-MB) levels in serum, resulted in structure damage and apoptosis of myocardium, and led to collagen proliferation of heart. Moreover, PS MPs could induce oxidative stress and thus activate fibrosis-related Wnt/β-catenin signaling pathway. These results suggested that PS MPs could lead to cardiovascular toxicity by inducing cardiac fibrosis via activating Wnt/β-catenin pathway and myocardium apoptosis triggered by oxidative stress. The present study provided some novelty evidence to elucidate the potential mechanism of cardiovascular toxicity induced by PS MPs.
显示更多 [+] 显示较少 [-]Risk assessment of using fish from different types of reservoirs as human food – A study on European perch (Perca fluviatilis) 全文
2020
Nikolić, Dušan | Skorić, Stefan | Lenhardt, Mirjana | Hegediš, Aleksandar | Krpo-Ćetković, Jasmina
Concentrations of As, Cd, Cr, Cu, Hg, Pb, and Zn in sediment samples and muscle tissue of the European perch were analyzed using inductively-coupled plasma optical emission spectrometry (ICP-OES), with the aim to assess the potential ecological (RI) and human health risk, and the degree of contamination (Cd) of three types of reservoirs in Serbia, based on their purpose: electricity generation (Vlasina, Perućac, Zaovine, and Međuvršje), drinking water supply (Garaši), and recreation (Lake Sava). The concentrations of the studied elements were higher in sediments than in fish. However, the levels of Cd in fish caught in Vlasina, Zaovine, and Međuvršje, Hg in Perućac and Garaši, and Pb in Lake Sava exceeded the maximum allowed concentrations. The pollution load index (PLI) indicated that sediments in all six reservoirs were contaminated, but Cd was low; a moderate contamination with Cd was observed in Vlasina, Perućac, and Zaovine, Cr in Zaovine and Međuvršje, and Cu in Međuvršje. A low RI was recorded for all studied reservoirs. Cd was found to be the primary contamination and ecological risk factor. Total target hazard quotient (THQ) and target carcinogenic risk factor (TR) were higher for fishers operating in these reservoirs than for the general population. Higher values of PLI, Cd, RI, and TR were observed in electricity generation reservoirs. Results indicated that this type of reservoirs suffer from higher anthropogenic pressure and/or have a worse pollution management policy compared with other types of reservoirs included in this study, especially the drinking water supply reservoir.
显示更多 [+] 显示较少 [-]Influence of overwinter distribution on exposure to persistent organic pollutants (POPs) in seabirds, ancient murrelets (Synthliboramphus antiquus), breeding on the Pacific coast of Canada 全文
2020
Miller, Aroha | Elliott, John E. | Wilson, Laurie K. | Elliott, Kyle H. | Drouillard, Ken G. | Verreault, Jonathan | Lee, Sandi | Idrissi, Abde
Assessing the fate of both legacy and newer persistent organic pollutants (POPs) is an ongoing challenge. Top predators, including seabirds, are effective monitors of POPs because they forage over a range of marine habitats, integrating signals over space and time. However, migration patterns can make unravelling contaminant sources, and potentially assessments of the effectiveness of regulations, challenging if chemicals are acquired at distant sites. In 2014, we fitted geolocators on ancient murrelets (Synthliboramphus antiqueus) at four colonies on the Pacific Coast of Canada to obtain movement data throughout an annual cycle. All birds underwent a post-breeding moult in the Bering Sea. Around one-third then returned to overwinter on the British Columbia (BC) coast while the rest migrated to overwinter in waters along the north Asian coast. Such a stark difference in migration destination provided an opportunity to examine the influence of wintering location on contaminant signals. In summer 2015, we collected blood samples from returned geo-tagged birds and analyzed them for a suite of contaminants, including polybrominated diphenyl ethers (PBDEs), non-PBDE halogenated flame retardants, perfluoroalkyl substances (PFASs), organochlorines, and mercury. Feathers were also collected and analyzed for stable isotopes (δ¹³C, δ¹⁵N, and δ³⁴S). We found no significant differences in blood concentrations of any contaminant between murrelets from the two different overwinter areas, a result that indicates relatively rapid clearance of POPs accumulated during winter. Spatial variation in diet (i.e., δ¹³C) was associated with both BDE-47 and -99 concentrations. However, individual variation in trophic level had little influence on concentrations of any other examined contaminants. Thus, blood from these murrelets is a good indicator of recent, local contaminants, as most signals appear independent of overwintering location.
显示更多 [+] 显示较少 [-]Susceptibility to oil spill spreading using case studies and simulated scenarios 全文
2020
Monteiro, Caroline Barbosa | Oleinik, Phelype Haron | Leal, Thalita Fagundes | Kirinus, Eduardo de Paula | Toldo Júnior, Elírio Ernestino | Marques, Wiliam Correa | Lopes, Bruna de Carvalho Faria Lima
Fossil fuels still prevail over other energy sources in the world’s consumption energy matrix. Thus, oil transportation and operations over maritime routes have been in high demand for a long time. Although oil spill accidents caused by these activities have reduced significantly over the last few decades, they still cause great concern. From this perspective, this paper presents simulation analyses of oil spill case studies using TELEMAC-3D hydrodynamic model coupled with an oil model. Hence a location susceptible to such accidents was selected and three real oil spills were simulated, for each of which there were official technical monitoring reports available. The obtained results contribute to the knowledge of oil pollution susceptibility in environmentally sensitive areas, as well as provide information concerning oil slick behaviour. Additionally, similarities between the modelled results and the technical reports were confirmed. These findings are useful for contingency planning and responding to these probable accidents.
显示更多 [+] 显示较少 [-]Electrochemical oxidation of ceftazidime with graphite/CNT-Ce/PbO2–Ce anode: Parameter optimization, toxicity analysis and degradation pathway 全文
2020
Duan, Pingzhou | Gao, Shiheng | Lei, Jiawei | Li, Xiang | Hu, Xiang
In this work, the electrochemical degradation of antibiotic ceftazidime has been studied using a novel rare earth metal Ce and carbon nanotubes codoped PbO₂ electrode. A competitively high oxygen evolution potential (2.4 V) and enhanced catalytic surface area were obtained, evidence by LSV and CV electrochemical characterization. The G/CNT-Ce/PbO₂–Ce electrode possessed a more compact structure and a smaller grain size than the other PbO₂ and Ce–PbO₂ electrodes, exhibiting a prolonged service lifetime, evidence by accelerated lifespan test and recycling degradation experiment. As electrolysis time reached 120 min, the removal efficiency of ceftazidime and TOC arrived at 100.0% and 54.2% respectively in 0.05 M Na₂SO₄ solution containing 50 mg⋅L⁻¹ ceftazidime. The effect of applied current density, pH value, initial ceftazidime concentration and chloride contents on the degradation performance were systematically evaluated. The results demonstrated that electrochemical oxidation of ceftazidime over the G/CNT-Ce/PbO₂–Ce electrode was highly effective, and the mineralization rate was greatly improved, compared with pristine PbO₂ electrode. Considering the toxicity was increased after 30 min electrolysis, the intermediates were quantitatively investigated through HPLC-MS, GC-MS and IC technology. According to the identified products, a reaction mechanism has been proposed and pyridine and aminothiazole were detected with concentration from approximately 1 to 3 mg⋅L⁻¹, which were regarded as toxic byproducts during electrooxidation. Further electrocatalyzing by ring cleavage reaction and complete mineralization to CO₂, NO₃⁻ and NH₄⁺ was proposed, which demonstrated the G/CNT-Ce/PbO₂–Ce electrode exhibited high efficiency for ceftazidime removal in mild conditions.
显示更多 [+] 显示较少 [-]Assessment of parameter uncertainty for non-point source pollution mechanism modeling: A Bayesian-based approach 全文
2020
Xueman, Yan | Wenxi, Lu | Yongkai, An | Weihong, Dong
Uncertainty assessment of parameters associated with non-point source pollution mechanism modeling are crucial for improving the effectiveness of pollution controlling. In this study, an approach based on Bayesian inference and integrated Markov chain Monte Carlo and multilevel factorial analysis has been developed, and it can not only apply straightforward Bayesian inference to assess parameter uncertainties, but also quantitatively investigate the main and interactive effects of multiple parameters on the model response variables by measuring the specific variations of model outputs. Its applicability and advantages are presented through the application of the Soil and Water Assessment Tool to Shitoukoumen Reservoir Catchment in northeast China. This study investigated the uncertainties of a set of sensitive parameters and their multilevel effects on model response variables, including average annual runoff (AAR), average annual sediment (AAS) and average annual total nitrogen (AAN). Results revealed that (i) soil conservation service runoff curve number for moisture condition II (CN2) had a positive effect on all response variables; (ii) available water capacity of the soil layer (SOL_AWC) had a negative effect on all response variables; (iii) the universal soil loss equation support practice (USLE_P) had a positive effect on AAS and AAN, and little effect on AAR; while the nitrate percolation coefficient (NPERCO) had a positive effect on AAN, and little effect on AAS and AAR; and (iv) the interactions amongst parameters had obvious interdependent effects on the model response variables, for example, the interaction between CN2 and SOL_AWC had a major impact on AAR. The above findings can improve the simulating and predicting capabilities of non-point source pollution mechanism model. Overall, this study highlights that the proposed approach represents a promising solution for uncertainty assessment of model parameters in non-point source pollution mechanism modeling.
显示更多 [+] 显示较少 [-]