细化搜索
结果 1781-1790 的 6,535
Composition characterization and biotransformation of dissolved, particulate and algae organic phosphorus in eutrophic lakes
2020
Feng, Weiying | Yang, Fang | Zhang, Chen | Liu, Jing | Song, Fanhao | Chen, Haiyan | Zhu, Yuanrong | Liu, Shasha | Giesy, John P.
Characteristics and transformation of organic phosphorus in water are vital to biogeochemical cycling of phosphorus and support of blooms of phytoplankton and cyanobacteria. Using solution ³¹P nuclear magnetic resonance (NMR), combined with field surveys and lab analyses, composition and structural characteristics of dissolved phosphorus (DP), particulate phosphorus (PP) and organic P in algae were studied in two eutrophic lakes in China, Tai Lake and Chao Lake. Factors influencing migration and transformation of these constituents in lake ecosystems were also investigated. A method was developed to extract, flocculate and concentrate DP and PP from lake water samples. Results showed that orthophosphate (Ortho-P) constituted 32.4%–81.3% of DP and 43.7%–54.9% of PP, respectively; while monoester phosphorus (Mono-P) was 13.2%–54.0% of DP and 32.9%–43.7% of PP, respectively. Phosphorus in algae was mostly organic P, especially Mono-P, which was ≥50% of TP. Environmental factors and water quality parameters such as temperature (T), electrical conductivity (EC), pH, secchi depth (SD), dissolved oxygen (DO), chemical oxygen demand (CODcᵣ), chlorophyll-a (Chl-a), affected the absolute and relative concentrations of various P components in the two lakes. Increased temperature promoted bioavailable P (Ortho-P and Mono-P) release to the lake waters. The results can provide an important theoretical basis for the mutual conversion process of organic P components between various media in the lake water environment.
显示更多 [+] 显示较少 [-]Biological effects from environmental pollution by toxic metals in the “land of fires” (Italy) assessed using the biomonitor species Lunularia cruciata L. (Dum)
2020
Maresca, Viviana | Sorbo, Sergio | Loppi, Stefano | Funaro, Federica | Del Prete, Davide | Basile, Adriana
The liverwort Lunularia cruciata was collected from the town of Acerra, in the heart of the so-called ‘Land of Fires’ a large area in the eastern part of Campania region of Italy affected by burning of waste and fraudulent dumping and one of the vertices of the “Italian Triangle of Death” so said for the high incidence and mortality from tumors. The data obtained from these samples were compared with samples collected in two other sites representing two different environmental conditions. The soil below the samples, and gametophytes, were collected and analyzed for the concentration of Al, As, Ba, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, V. DNA damage, Reactive Oxygen Species production and localization, activity of antioxidant enzymes and presence of chelating molecules were investigated. All biomarkers provided an answer closely related to the pollution conditions at the 3 sites. We discuss the data considering the possibility of using these biological changes as environmental pollution biomarkers. Finally, it is underlined the importance of phytochelatins due to of their specificity for metal pollution.
显示更多 [+] 显示较少 [-]Vancomycin exposure caused opportunistic pathogens bloom in intestinal microbiome by simulator of the human intestinal microbial ecosystem (SHIME)
2020
Liu, Lei | Wang, Qing | Wu, Xinyan | Qi, Hongmei | Das, Ranjit | Lin, Huai | Shi, Jingliang | Wang, Siyi | Yang, Jing | Xue, Yingang | Mao, Daqing | Luo, Yi
Antibiotics are emerging organic pollutants posing high health risks to humans by causing human intestinal microbial disorders with increasing abundances of opportunistic pathogens, and fecal microbiota transplantation (FMT) has been confirmed to restore the dysbiosis of gut flora in many kinds of intestinal disease. However, to date, few studies have focused on the bloomed opportunistic pathogens associated human disease-related pathways as well as antibiotic resistance genes (ARGs) after vancomycin exposure, and there is limited information on using FMT for restoration of intestinal microbiome affected by antibiotics. Therefore, this study investigated effects of vancomycin on the opportunistic pathogens, human disease-related pathways as well as ARGs in human gut, and the restoration of intestinal microbiome by FMT. Results indicated that vancomycin treatment substantially increased human disease-related pathways and decreased abundances of ARGs. Besides, the bloomed opportunistic pathogens including Achromobacter, Klebsiella, and Pseudomonas, caused by vancomycin exposure, were positively correlated with human disease-related pathways. The microbiota abundance and genes of human disease-related pathways and antibiotic resistance showed a remarkable return towards baseline after FMT, but not for natural recovery. These findings suggest that impacts of vancomycin on human gut are profound and FMT will be a promising strategy in clinical application that can restore the dysbiosis of gut microbiota, which may be valuable for directing future work.
显示更多 [+] 显示较少 [-]Efficient multiresidue determination method for 168 pharmaceuticals and metabolites: Optimization and application to raw wastewater, wastewater effluent, and surface water in Beijing, China
2020
Zhang, Yizhe | Duan, Lei | Wang, Bin | Liu, Cristina Su | Jia, Yanbo | Zhai, Nannan | Blaney, Lee | Yu, Gang
New analytical methods are needed to efficiently measure the growing list of priority pharmaceuticals in environmental samples. In this regard, a rapid, sensitive, and robust method was developed for quantitation of 168 pharmaceuticals and pharmaceutical metabolites using solid-phase extraction (SPE) and liquid chromatography with tandem mass spectrometry. The extraction protocol and instrumental efficiency were specifically addressed to increase analytical workload and throughput. The optimized protocols, which are five times more efficient than US EPA Method 1694, enabled analyte recoveries that ranged from 77% to 117% for 162 analytes with method quantitation limits (MQLs) as low as 0.1 ng L⁻¹. To verify the suitability of the improved analytical method for environmental samples, 24-h composite samples of raw wastewater and wastewater effluent, along with downstream surface water, were analyzed. Overall, 143/168 target compounds were identified in at least one of the samples, and 130/168 analytes were present at concentrations above their MQLs. The total mass concentration of the measured analytes decreased by 93% during wastewater treatment. The analyte concentrations in the wastewater effluent were comparable to those measured in surface water 1 km downstream of the wastewater discharge point. Ultimately, the comprehensive method will serve as an important tool to inform the occurrence, fate, transport, and toxicity of a large suite of priority pharmaceuticals and pharmaceutical metabolites in natural and engineered systems.
显示更多 [+] 显示较少 [-]Transcriptome alterations in female Daphnia (Daphnia magna) exposed to 17β-estradiol
2020
Zheng, Yao | Yuan, Julin | Gu, Zhimin | Yang, Guang | Li, Tian | Chen, Jiazhang
The molecular mechanism of evaluating 17β-estradiol (E₂)-induced toxicity in female Daphnia magna has not been determined. In this study, the transcriptome of D. magna was analyzed after exposure to three different concentrations (0, 10, and 100 ng L⁻¹) of E₂ at 3, 6, and 12 h. The results showed 351–17,221 significantly up-regulated and 505–10,282 significantly down-regulated genes (P < 0.05). Overall, the selected largest 10,282 (10 ng L⁻¹vs control at 12 h) down-regulated and 17,221 (100 vs 10 ng L⁻¹) up-regulated genes were identified; following annotation, pathways in cancer and RNA transport were found to be enriched according to the interaction network. Among all completed comparisons, KEGG pathways related to the immune system, cancer, disease infection, and active compound metabolism were identified by short time series expression miner analysis. A different set of genes fluctuated in a “U”-shaped pattern over time and at different concentrations of E₂, whereas some genes associated with disintoxication showed a reverse “U”-shaped response as E₂ administration was increased. These results suggest that E₂ exposure caused transcriptional changes in the immune system, disintoxication, disease prevention, and the protein degradation pathway.
显示更多 [+] 显示较少 [-]Effect of pyrolysis conditions on bone char characterization and its ability for arsenic and fluoride removal
2020
Alkurdi, Susan S.A. | Al-Juboori, Raed A. | Bundschuh, Jochen | Bowtell, Les | McKnight, Stafford
This study examined arsenite [As(III)], arsenate [As(V)] and fluoride (F⁻) removal potential of bone char produced from sheep (Ovis aries) bone waste. Pyrolysis conditions tested were in the 500 °C–900 °C range, for a holding time of 1 or 2 h, with or without N₂ gas purging. Previous bone char studies mainly focused on either low or high temperature range with limited information provided on As(III) removal. This study aims to address these gaps and provide insights into the effect of pyrolysis conditions on bone char sorption capacity. A range of advanced chemical analyses were employed to track the change in bone char properties. As pyrolysis temperature and holding time increased, the resulting pH, surface charge, surface roughness, crystallinity, pore size and CEC all increased, accompanied by a decrease in the acidic functional groups and surface area. Pyrolysis temperature was a key parameter, showing improvement in the removal of both As(III) and As(V) as pyrolysis temperature was increased, while As(V) removal was higher than As(III) removal overall. F⁻ removal displayed an inverse relationship with increasing pyrolysis temperature. Bone char prepared at 500 °C released significantly more dissolved organic carbon (DOC) then those prepared at a higher temperature. The bone protein is believed to be a major factor. The predominant removal mechanisms for As were surface complexation, precipitation and interaction with nitrogenous functional groups. Whereas F⁻ removal was mainly influenced by interaction with oxygen functional groups and electrostatic interaction. This study recommends that the bone char pyrolysis temperature used for As and F⁻ removal are 900 °C and 650 °C, respectively.
显示更多 [+] 显示较少 [-]Impacts of different sources of animal manures on dissemination of human pathogenic bacteria in agricultural soils
2020
Li, Jinyang | Chen, Qinglin | Li, Helian | Li, Shiwei | Liu, Yinghao | Yang, Liyuan | Han, Xuemei
The human pathogenic bacteria (HPB) in animal feces may disseminate to agricultural soils with their land application as organic fertilizer. However, the knowledge about the impacts of different sources and rates of animal manures on the temporal changes of soil HPB remains limited, which hamper our ability to estimate the potential risks of their land application. Here, we constructed an HPB database including 565 bacterial strains. By blasting the 16 S rRNA gene sequences against the database we explored the occurrence and fate of HPB in soil microcosms treated with two rates of swine, poultry or cattle manures. A total of 30 HPB were detected in all of manure and soil samples. Poultry manure at the high level obviously improved the abundance of soil HPB. The application of swine manure could introduce concomitant HPB into the soils. Of which, Pseudomonas syringae pv. syringae B728a and Escherichia coli APEC O78 may deserve more attention because of their survival for a few days in manured soils and being possible hosts of diverse antibiotic resistance genes (ARGs) as revealed by co-occurrence pattern. Bayesian source tracking analysis showed that the HPB derived from swine manure had a higher contribution to soil pathogenic communities than those from poultry or cattle manures in early days of incubation. Mantel test together with variation partitioning analysis suggested that bacterial community and soil physicochemical properties were the dominant factors determining the profile of HPB and contributed 64.7% of the total variations. Overall, our results provided experimental evidence that application of animal manures could facilitate the potential dissemination of HPB in soil environment, which should arouse sufficient attention in agriculture practice and management to avoid the threat to human health.
显示更多 [+] 显示较少 [-]Outdoor-to-indoor transport of ultrafine particles: Measurement and model development of infiltration factor
2020
Chen, Chen | Yao, Mingyao | Luo, Xu | Zhu, Yulin | Liu, Zhaoyang | Zhuo, Hanchen | Zhao, Bin
Ambient ultrafine particles (UFPs: particles of diameter less than 100 nm) cause significant adverse health effects. As people spend most time indoors, the outdoor-to-indoor transport of UFPs plays a critical role in the accuracy of personal exposure assessments. Herein, a strategy was proposed to measure and analyze the infiltration factor (Fᵢₙf) of UFPs, an important parameter quantifying the fraction of ambient air pollutants that travel inside and remain suspended indoors. Ninety-three measurements were conducted in 11 residential rooms in all seasons in Beijing, China, to investigate Fᵢₙf of UFPs and its associated influencing factors. A multilevel regression model incorporating eight possible factors that influence infiltration was developed to predict Fᵢₙf and FᵢₙfSOA (defined as the ratio of indoor to outdoor UFP concentrations without indoor sources, but with indoor secondary organic aerosol (SOA) formation). It was found that the air change rate was the most important factor and coagulation was considerable, while the influence of SOA formation was much smaller than that of other factors. Our regression model accurately predicted daily-average Fᵢₙf. The annually-averaged Fᵢₙf of UFPs was 0.66 ± 0.10, which is higher than that of PM₂.₅ and PM₁₀, demonstrating the importance of controlling indoor UFPs of outdoor origin.
显示更多 [+] 显示较少 [-]Assessment of indoor air exposure among newborns and their mothers: Levels and sources of PM10, PM2.5 and ultrafine particles at 65 home environments
2020
Madureira, Joana | Slezakova, Klara | Costa, Carla | Pereira, Maria Carmo | Teixeira, João Paulo
Significant efforts have been directed towards addressing the adverse health effects of atmospheric particles, emphasizing the relevance of indoor exposure. Homes represent an indoor environment where human spend the majority of their time. Thus, the objective of this work was to concurrently assess different matrix of indoor particles considering both mass (PM₁₀, PM₂.₅) and number (N₂₀₋₁₀₀₀) concentrations in indoor and outdoor air of homes (n = 65). Real-time measurements (PM₁₀, PM₂.₅, UFP) were conducted simultaneously during 48 h in dwellings situated in Oporto, Portugal. In 75% of homes, indoor PM₂.₅ (mean = 53 μg m⁻³) exceeded limit of 25 μg m⁻³, for PM₁₀ (mean = 57 μg m⁻³) 41% of homes demonstrated average levels higher than 50 μg m⁻³, thus indicating potential risks. Indoor PM₁₀ was mostly (82–99%) composed of PM₂.₅, both PM were highly correlated (|rs|>0.9655), thus suggesting the similar origin. Indoor PM originated from infiltrations of outdoor emissions; ∼70% of homes exhibited indoor to outdoor (I/O) ratio < 1. On the contrary, UFP indoors (mean = 13.3 × 10³ # cm⁻³) were higher than outdoors (mean = 10.0 × 10³ # cm⁻³). Indoor UFP spatially varied as follows: kitchens > living rooms > bedrooms. UFP indoors were poorly correlated (|rs| = 0.456) with outdoor concentrations, I/O ratios showed that indoor UFP predominantly originated from indoor emission sources (combustions). Therefore, in order to reduce exposure to UFP and protect public health, the primary concerns should be focused on controlling emissions from indoor sources.
显示更多 [+] 显示较少 [-]Impact of the Fukushima Dai-ichi Nuclear Power Plant Accident on the neon flying squids in the Northwest Pacific from 2011 to 2018
2020
Men, Wu | Wang, Fenfen | Yu, Wen | He, Jianhua | Lin, Feng | Deng, Fangfang
Following nine years since the Fukushima Dai-ichi Nuclear Power Plant Acciden (FDNPPA), it might be the time to draw a much clearer conclusion for the impact of FDNPPA on marine biota. In this work, the evolution of the FDNPPA derived ¹³⁴Cs, ¹³⁷Cs and ¹¹⁰ᵐAg in the neon flying squids in the Northwest Pacific from 2011 to 2018 were studied. The background level of ¹³⁷Cs in neon flying squids (<0.10 Bq/kgfᵣₑₛₕ wₑᵢgₕₜ with the average of 0.017 Bq/kgfᵣₑₛₕ wₑᵢgₕₜ) before FDNPPA were estimated. The radioactive levels of ¹³⁴Cs, ¹³⁷Cs and ¹¹⁰ᵐAg in neon flying squids decreased with time. ¹³⁴Cs and ¹¹⁰ᵐAg decreased at the half-lives of 7.6 months and 5.7 months at the population level, respectively. After May 2014, ¹³⁴Cs and ¹¹⁰ᵐAg cannot be detected and ¹³⁷Cs activities returned to the background level before FDNPPA. BCFs of cesium isotopes (3.7–17.7 with the average of 10.8) and ¹¹⁰ᵐAg (∼7 × 10⁴) for neon flying squids were estimated. The amount of ¹¹⁰ᵐAg released into the Northwest Pacific (∼20-∼26 TBq) were firstly calculated using a ¹³⁴Cs/¹¹⁰ᵐAgₐcₜᵢᵥᵢₜy ᵣₐₜᵢₒ method. Radiation dose assessment demonstrated that it was far from causing radiation harm to neon flying squids in the open ocean of Northwest Pacific and humans who ingested these neon flying squids.
显示更多 [+] 显示较少 [-]