细化搜索
结果 181-190 的 4,241
Purifying, cloning and characterizing a novel dehalogenase from Bacillus sp. GZT to enhance the biodegradation of 2,4,6-tribromophenol in water
2017
Liang, Zhishu | Li, Guiying | An, Taicheng
2,4,6-Tribromophenol (TBP), an intermediate of brominated flame retardants, can easily release to environment and recalcitrant to degradation. Previously, Bacillus sp. GZT, a pure aerobic strain capable of simultaneously debrominating and mineralizing TBP, was successfully isolated by us. To further obtain a practical application and dig up its TBP degradation mechanism, a total of 46.7-fold purification of a novel dehalogenase with a final specific activity of 18.9 U mg−1 and a molecular mass of 63.4 kDa was achieved. Under optimal conditions (35 °C and 200 rpm), up to 80% degradation efficiencies were achieved within 120 min. Adding H2O2, NADPH, Mn2+ and Mg2+ promoted enzyme reaction effectively; while EDTA, methyl viologen, Ni2+, Cu2+, Ca2+ and Fe2+ strongly inhibited reaction activities. The debromination of TBP was catalyzed by the enzyme at a Km of 78 μM and a Vmax of 0.65 min−1 mg protein−1, which indicated that this dehalogenase could specifically eliminate TBP with a high efficiency and stability. Based on MALDI-TOF/TOF analysis, the dehalogenase shared 98% identity with peptide ABC transporter substrate-binding protein. One open reading frame (ORF) encoding this peptide was found in Strain GZT genome, subjected to clone and expressed in Escherichia coli (E. coli) to characterize the encoding gene. Result showed that this recombinant strain could also remove as similar amount of TBP as Bacillus sp. GZT under the identical condition. Based on these results, we suggest that this newly-isolated TBP dehalogenase highlights a new approach for remediating TBP pollution.
显示更多 [+] 显示较少 [-]Microplastic litter composition of the Turkish territorial waters of the Mediterranean Sea, and its occurrence in the gastrointestinal tract of fish
2017
Güven, Olgaç | Gökdağ, Kerem | Jovanović, Boris | Kıdeyş, Ahmet Erkan
Microplastic pollution of marine environment is receiving increased publicity over the last few years. The present survey is, according to our knowledge, the survey with the largest sample size analyzed, to date. In total, 1337 specimens of fish were examined for the presence of plastic microlitter representing 28 species and 14 families. In addition, samples of seawater and sediment were also analysed for the quantification of microplastic in the same region. Samples of water/sediment were collected from 18 locations along the Mediterranean coast of Turkey. 94% of all collected plastic microlitter from the sea was in the size range between 0.1 and 2.5 mm, while the occurrence of other sizes was rare. The quantity of microplastic particles in surface water samples ranged from 16 339 to 520 213 per km2. Fish were collected from 10 locations from which 8 were either shared with or situated in the proximity of water/sediment sampling locations. A total of 1822 microplastic particles were extracted from stomach and intestines of fish. Majority of ingested particles were represented by fibers (70%) and hard plastic (20.8%), while the share of other groups: nylon (2.7%), rubber (0.8%) and miscellaneous plastic (5.5%) were low. The blue color of plastic was the most dominant color. 34% of all examined fish had microplastic in the stomach. On average, fish which had microplastic contained 1.80 particle per stomach. 41% of all fish had microplastic in the intestines with an average of 1.81 particle per fish. 771 specimens contained microplastic in either stomach and/or intestines representing 58% of the total sample with an average of 2.36 particles per fish. Microplastic was found in all species/families that had sample size of at least 2 individuals. The number of particles present in either stomach or intestines ranged between 1 and 35. Ingested microparticles had an average diameter ±SD of 656 ± 803 μm, however particles as small as 9 μm were detected. The trophic level of fish species had no influence whatsoever on the amount of ingested microplastic. Pelagic fish ingested more microplastic than demersal species. In general, fish that ingested higher number of microplastic particles originated from the sites that also had a higher particle count in the seawater and sediment.
显示更多 [+] 显示较少 [-]Development of polyurethane-based passive samplers for ambient monitoring of urban-use insecticides in water
2017
Liao, Chunyang | Richards, Jaben | Taylor, Allison R. | Gan, Jay
Widespread use of insecticides for the control of urban pests such as ants, termites, and spiders has resulted in contamination and toxicity in urban aquatic ecosystems in different regions of the world. Passive samplers are a convenient and integrative tool for in situ monitoring of trace contaminants in surface water. However, the performance of a passive sampler depends closely on its affinity for the target analytes, making passive samplers highly specific to the types of contaminants being monitored. The goal of this study was to develop a passive sampler compatible with a wide range of insecticides, including the strongly hydrophobic pyrethroids and the weakly hydrophobic fipronil and organophosphates. Of six candidate polymeric thin films, polyurethane film (PU) was identified to be the best at enriching the test compounds. The inclusion of stable isotope labeled analogs as performance reference compounds (PRCs) further allowed the use of PU film for pyrethroids under non-equilibrium conditions. The PU sampler was tested in a large aquarium with circulatory water flow, and also deployed at multiple sites in surface streams in southern California. The concentrations of pesticides derived from the PU sampler ranged from 0.5 to 18.5 ng/L, which were generally lower than the total chemical concentration measured by grab samples, suggesting that suspended particles and dissolved organic matter in water rendered them less available. The influence of suspended particles and dissolved organic matter on bioavailability was more pronounced for pyrethroids than for fipronils. The results show that the developed PU film sampler, when coupled with PRCs, may be used for rapid and sensitive in-situ monitoring of a wide range of insecticides in surface water.
显示更多 [+] 显示较少 [-]Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions
2017
Chen, Ming | Wang, Dengjun | Yang, Fan | Xu, Xiaoyun | Xu, Nan | Cao, Xinde
Land application of biochar has been increasingly recommended as a powerful strategy for carbon sequestration and soil remediation. However, the biochar particles, especially those in the nanoscale range, may migrate or carry the inherent contaminants along the soil profile, posing a potential risk to the groundwater. This study investigated the transport and retention of wood chip-derived biochar nanoparticles (NPs) in water-saturated columns packed with a paddy soil. The environmentally-relevant soil solution chemistry including ionic strength (0.10–50 mM), electrolyte type (NaCl and CaCl2), and natural organic matter (0–10 mg L−1 humic acid) were tested to elucidate their effects on the biochar NPs transport. Higher mobility of biochar NPs was observed in the soil at lower ionic strengths, with CaCl2 electrolyte being more effective than NaCl in decreasing biochar NPs transport. The retained biochar NPs in NaCl was re-entrained (∼57.7%) upon lowering transient pore-water ionic strength, indicating that biochar NPs were reversibly retained in the secondary minimum. In contrast, negligible re-entrainment of biochar NPs occurred in CaCl2 due to the primary minimum and/or particle aggregation. Humic acid increased the mobility of biochar NPs, likely due to enhanced electrosteric repulsive interactions. The transport behaviors of biochar NPs can be well interpreted by a two-site kinetic retention model that assumes reversible retention for one site, and irreversible retention for the other site. Our findings indicated that the transport of wood chip biochar NPs is significant in the paddy soil, highlighting the importance of understanding the mobility of biochar NPs in natural soils for accurately assessing their environmental impacts.
显示更多 [+] 显示较少 [-]Capturing the sensitivity of land-use regression models to short-term mobile monitoring campaigns using air pollution micro-sensors
2017
Minet, L. | Gehr, R. | Hatzopoulou, M.
The development of reliable measures of exposure to traffic-related air pollution is crucial for the evaluation of the health effects of transportation. Land-use regression (LUR) techniques have been widely used for the development of exposure surfaces, however these surfaces are often highly sensitive to the data collected. With the rise of inexpensive air pollution sensors paired with GPS devices, we witness the emergence of mobile data collection protocols. For the same urban area, can we achieve a ‘universal’ model irrespective of the number of locations and sampling visits? Can we trade the temporal representation of fixed-point sampling for a larger spatial extent afforded by mobile monitoring? This study highlights the challenges of short-term mobile sampling campaigns in terms of the resulting exposure surfaces. A mobile monitoring campaign was conducted in 2015 in Montreal; nitrogen dioxide (NO2) levels at 1395 road segments were measured under repeated visits. We developed LUR models based on sub-segments, categorized in terms of the number of visits per road segment. We observe that LUR models were highly sensitive to the number of road segments and to the number of visits per road segment. The associated exposure surfaces were also highly dissimilar.
显示更多 [+] 显示较少 [-]Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress
2017
Crobeddu, Bélinda | Aragao-Santiago, Leticia | Bui, Linh-Chi | Boland, Sonja | Baeza Squiban, Armelle
Particulate air pollution being recognized to be responsible for short and long term health effects, regulations for particulate matter with an aerodynamic diameter less than 2.5 (PM2.5) are more and more restrictive. PM2.5 regulation is based on mass without taking into account PM2.5 composition that drives toxicity. Measurement of the oxidative potential (OP) of PM could be an additional PM indicator that would encompass the PM components involved in oxidative stress, the main mechanism of PM toxicity. We compared different methods to evaluate the intrinsic oxidative potential of PM2.5 sampled in Paris and their ability to reflect the oxidative and inflammatory response in bronchial epithelial cells used as relevant target organ cells. The dithiothreitol depletion assay, the antioxidant (ascorbic acid and glutathione) depletion assay (OPAO), the plasmid scission assay and the dichlorofluorescein (DCFH) oxidation assay used to characterize the OP of PM2.5 (10–100 μg/mL) provided positive results of different magnitude with all the PM2.5 samples used with significant correlation with different metals such as Cu and Zn as well as total polyaromatic hydrocarbons and the soluble organic fraction. The OPAO assay showed the best correlation with the production of intracellular reactive oxygen species by NCI-H292 cell line assessed by DCFH oxidation and with the expression of anti-oxidant genes (superoxide dismutase 2, heme-oxygenase-1) as well as the proinflammatory response (Interleukin 6) when exposed from 1 to 10 μg/cm2. The OPAO assay appears as the most prone to predict the biological effect driven by PM2.5 and related to oxidative stress.
显示更多 [+] 显示较少 [-]The influence of e-waste recycling on the molecular ecological network of soil microbial communities in Pakistan and China
2017
Jiang, Longfei | Cheng, Zhineng | Zhang, Dayi | Song, Mengke | Wang, Yujie | Luo, Chunling | Yin, Hua | Li, Jun | Zhang, Gan
Primitive electronic waste (e-waste) recycling releases large amounts of organic pollutants and heavy metals into the environment. As crucial moderators of geochemical cycling processes and pollutant remediation, soil microbes may be affected by these contaminants. We collected soil samples heavily contaminated by e-waste recycling in China and Pakistan, and analyzed the indigenous microbial communities. The results of this work revealed that the microbial community composition and diversity, at both whole and core community levels, were affected significantly by polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs) and heavy metals (e.g., Cu, Zn, and Pb). The geographical distance showed limited impacts on microbial communities compared with geochemical factors. The constructed ecological network of soil microbial communities illustrated microbial co-occurrence, competition and antagonism across soils, revealing the response of microbes to soil properties and pollutants. Two of the three main modules constructed with core operational taxonomic units (OTUs) were sensitive to nutrition (total organic carbon and total nitrogen) and pollutants. Five key OTUs assigned to Acidobacteria, Proteobacteria, and Nitrospirae in ecological network were identified. This is the first study to report the effects of e-waste pollutants on soil microbial network, providing a deeper understanding of the ecological influence of crude e-waste recycling activities on soil ecological functions.
显示更多 [+] 显示较少 [-]Baseline tissue concentrations of metal in aquatic oligochaetes: Field and laboratory approaches
2017
Méndez-Fernández, Leire | Martinez-Madrid, Maite | Pardo, Isabel | Rodríguez, Pilar
Metal tissue residue evaluation in benthic macroinvertebrates is an important component of an integrated approach to ecological risk assessment of metals and metalloids in the Nalón River basin (North Spain), where historic mining activities took place. The purpose of this study was to know the baseline tissue concentration of 7 metals (Cd, Cu, Cr, Hg, Ni, Pb, and Zn) and one metalloid (As) in aquatic oligochaetes, sediment burrower organisms, representative of the collector-gatherer functional feeding group in the macroinvertebrate community. Metal concentration was measured in sediment and field aquatic oligochaetes at several reference (minimally disturbed) sites of the Nalón River basin, selected following Water Framework Directive criteria. Metal tissue residues were measured separately in field microdriles and lumbricids and compared with tissue concentrations measured in the aquatic oligochaete Tubifex tubifex exposed to reference sediments from the Nalón and other Cantabrian River basins in 28-d chronic laboratory bioassays. Metal tissue residues in bioassay organisms attained usually higher levels than in field worms, in special for As, Cu, Hg and Zn, although metal levels were within the same order of magnitude. The baseline values for metals were calculated from 90th percentile (P90) values in field aquatic oligochaetes (microdriles and lumbricids). The P90 for Hg, As and Zn could efficiently discriminate Toxic and Non-Toxic sites, while baseline values calculated for the other metals deserve further research due either to the low range of values found in the present study, or to the regulation of the metal body concentration, as in the case of Cu.
显示更多 [+] 显示较少 [-]Mechanisms of toxic action of silver nanoparticles in the protozoan Tetrahymena thermophila: From gene expression to phenotypic events
2017
Juganson, Katre | Mortimer, Monika | Ivask, Angela | Pucciarelli, Sandra | Miceli, Cristina | Orupõld, Kaja | Kahru, Anne
Silver nanoparticles (AgNPs) are highly toxic to aquatic organisms, however, there is no consensus whether the toxicity is caused solely by released Ag-ions or also by reactive oxygen species (ROS). Here, the effects of protein-coated AgNPs (14.6 nm, Collargol) were studied on viability, oxidative stress and gene expression levels in wild type strains (CU427 and CU428) of unicellular ciliate Tetrahymena thermophila. Viability-based 24 h EC50 values of AgNPs were relatively high and significantly different for the two strains: ∼100 mg/L and ∼75 mg/L for CU427 and CU428, respectively. Similarly, the expression profiles of oxidative stress (OS) related genes in the two strains were different. However, even though some OS related genes were overexpressed in AgNP-exposed ciliates, intracellular ROS level was not elevated, possibly due to efficient cellular antioxidant defence mechanisms. Compared to OS related genes, metallothionein genes were upregulated at a considerably higher level (14 versus 5000-fold) suggesting that Ag-ion mediated toxicity mechanism of AgNPs prevailed over OS related pathway. Also, comparison between Ag-ions released from AgNPs at EC50 concentration and the respective EC50 values of AgNO3 indicated that Ag-ions played a major role in the toxicity of AgNPs in T. thermophila. The study highlights the importance of combining physiological assays with gene expression analysis in elucidating the mechanisms of action of NPs to reveal subtle cellular responses that may not be detectable in bioassays. In addition, our data filled the gaps on the toxicity of AgNPs for environmentally relevant and abundant organisms. The parallel study of two wild type strains allowed us to draw conclusions on strain to strain variability in susceptibility to AgNPs.
显示更多 [+] 显示较少 [-]Differential responses of peach (Prunus persica) seedlings to elevated ozone are related with leaf mass per area, antioxidant enzymes activity rather than stomatal conductance
2017
Dai, Lulu | Li, Pin | Shang, Bo | Liu, Shuo | Yang, Aizhen | Wang, Younian | Feng, Zhaozhong
To evaluate the ozone (O3) sensitivity among peach tree (Prunus persica) cultivars widely planted in Beijing region and explore the possible eco-physiological response mechanisms, thirteen cultivars of peach seedlings were exposed to either charcoal-filtered air or elevated O3 (E-O3, non-filtered ambient air plus 60 ppb) for one growing season in open-top chambers. Leaf structure, stomatal structure, gas exchange and chlorophyll a fluorescence, photosynthetic pigments, antioxidant defense system and lipid peroxidation were measured in three replicated chambers. Results showed that E-O3 significantly reduced abaxial epidemis thickness, but no effects on the thicknesses of adaxial epidemis, palisade parenchyma and spongy parenchyma. Stomatal area, density and conductance were not significantly affected by E-O3. E-O3 significantly accelerated leaf senescence, as indicated by increased lipid peroxidation and more declines in light-saturated photosynthetic rate and pigments contents. The reduced ascorbate content (ASC) was decreased but antioxidant enzyme activity (CAT, APX and SOD) and total antioxidant capacity (TAC) were significantly increased by E-O3 among cultivars. The cultivars with visible symptoms also had more reductions in net photosynthetic rate than those without visible symptoms. Ozone sensitivity among cultivars was strongly linked to leaf mass per area (LMA), antioxidant enzymes activity e.g. SOD, APX rather than stomatal parameters (stomatal area, density and conductance) and ASC. Results could provide a theoretical basis for selecting and breeding the ozone-resistant cultivars of peach trees grown in high O3-polluted regions.
显示更多 [+] 显示较少 [-]