细化搜索
结果 181-190 的 7,995
Face masks as a source of nanoplastics and microplastics in the environment: Quantification, characterization, and potential for bioaccumulation 全文
2021
Ma, Jie | Chen, Fengyuan | Xu, Huo | Jiang, Hao | Liu, Jingli | Li, Ping | Chen, Ciara Chun | Pan, Ke
Billions of disposable face masks are consumed daily due to the COVID-19 pandemic. The role of these masks as a source of nanoplastics (NPs) and microplastics (MPs) in the environment has not been studied in previous studies. We quantified and characterized face mask released particles and evaluated their potential for accumulation in humans and marine organisms. More than one billion of NPs and MPs were released from each surgical or N95 face mask. These irregularly-shaped particles sized from c. 5 nm to c. 600 μm. But most of them were nano scale sized <1 μm. The middle layers of the masks had released more particles than the outer and inner layers. That MPs were detected in the nasal mucus of mask wearers suggests they can be inhaled while wearing a mask. Mask released particles also adsorbed onto diatom surfaces and were ingested by marine organisms of different trophic levels. This data is useful for assessing the health and environmental risks of face masks.
显示更多 [+] 显示较少 [-]Dynamics of soil N2O emissions and functional gene abundance in response to biochar application in the presence of earthworms 全文
2021
Wu, Yupeng | Liu, Jiao | Shaaban, Muhammad | Hu, Ronggui
Nitrous oxide (N₂O) is a devastating greenhouse gas and acts as an ozone-depleting agent. Earthworms are a potential source of soil N₂O emissions. Application of biochar can mitigate earthworm-induced N₂O emissions. However, the underlying interactive mechanism between earthworms and biochar in soil N₂O emissions is still unclear. A 35-day laboratory experiment was conducted to examine the soil N₂O emission dynamics for four different treatments, earthworm presence with biochar application (EC), earthworm presence without biochar application (E), earthworm absence with biochar application (C) and earthworm absence without biochar application, and the control. Results indicated a negative impact of biochar on earthworm activity, displaying a significantly (p ≤ 0.05) lower survival rate and biomass of earthworms in treatment EC than E. Compared with the control, earthworm presence significantly (p ≤ 0.05) increased cumulative N₂O emissions, while application of biochar in the presence of earthworms significantly (p ≤ 0.05) decreased cumulative N₂O emissions (485 and 690 μg kg⁻¹ for treatments EC and E, respectively). Treatments E and EC significantly (p ≤ 0.05) increased soil microbial biomass carbon (MBC), ammonium (NH₄⁺-N), nitrate (NO₃⁻N), and dissolved organic carbon (DOC) content and soil pH as compared with the control. The gene copy number of 16 S rRNA, AOA, AOB, nirS, and nosZ increased for all treatments when compared with the control; however, a significant (p ≤ 0.05) difference among the studied genes was only observed for the nosZ gene (2.05 and 2.56 × 10⁶ gene copies g⁻¹ soil for treatments E and EC, respectively). Earthworm-induced soil N₂O emissions were significantly (p ≤ 0.05) reduced by biochar addition. The possible underlying mechanisms may include: (1) short-term negative impacts on earthworm activity; (2) a change of functional gene abundance in earthworm casts; and (3) an increase in soil pH due to addition of biochar.
显示更多 [+] 显示较少 [-]Thermal, hygric, and environmental performance evaluation of thermal insulation materials for their sustainable utilization in buildings 全文
2021
Wi, Seunghwan | Park, Ji Hun | Kim, Young Uk | Yang, Sungwoong | Kim, Sumin
As energy use in the building sector is increasing worldwide, building materials with characteristics that save energy are becoming increasingly important; in addition, there is an emerging need for high-performance insulation materials with low thermal conductivity. However, thermal insulation should consider thermal conductivity, which is the main performance parameter, in addition to the water adsorption rate, acidity, and deformation and expansion due to drying conditions. This study evaluated the main performance of 21 insulation materials used at construction sites to objectively and clearly evaluate their overall performance, including their thermal conductivity. Thermal conductivity was measured by the heat flow meter method according to ASTM C518 and ISO 8301 standards; it was also evaluated according to the drying conditions. The water absorption rate was evaluated by ISO 2896 to ensure the sustainability and long-term thermal conductivity performance of the material. Acidity was evaluated with ASTM E861 to reduce the environmental load of the buildings and soil. The results of this study reviewed an appropriate method to measure the main performance according to the type of insulation.
显示更多 [+] 显示较少 [-]Assessing the potential to use CDOM as an indicator of water quality for the sediment-laden Yellow river, China 全文
2021
Li, Dianbao | Pan, Baozhu | Han, Xu | Li, Junhua | Zhu, Qingwei | Li, Ming
Chromophoric dissolved organic matter (CDOM) in rivers is mainly affected by natural conditions and human activities and can reflect the watershed pollution status to a certain extent. The Yellow River is one of the largest contributors to the global riverine sediment flux from the land to ocean, and there is a paucity of information on how the optical properties of CDOM have the potential to serve as an indicator of water quality for the sediment-laden Yellow River. In this study, a three-dimensional fluorescence parallel factor (PARAFAC) analysis method was applied to investigate the seasonal and spatial variations in CDOM fluorescence components and spectral characteristics from the source region to the estuary in the mainstream of Yellow River. The relationships of CDOM with water quality indicators and trophic state were also analyzed. Six PARAFAC components (C1–C6) were identified and grouped into two categories: humic-like components (C1–C4), which accounted for 85.8 %, and protein-like components (C5 and C6), which accounted for only 14.2 %. The CDOM components, spectral parameters, and their clear correlations with the main ions (Na⁺ and Cl⁻) all indicated that the humic-like components may be primarily derived from nonpoint source erosion, and the protein-like components were mainly derived from point source discharges in the watershed. The combination of the CDOM absorption coefficient at 254 nm (a(254)), spectral slope ratio (SR), specific UV absorbance SUVA₂₅₄, and fluorescence index (FI) had a good predictive ability for the key water quality indicators (total nitrogen (TN), dissolved total nitrogen (DTN), total phosphorus (TP), dissolved total phosphorus (DTP), and chlorophyll a (Chl a)) and trophic state index (TSI). Therefore, some fluorophores and UV spectral parameters of CDOM in the Yellow River can be used for rapid water quality monitoring and pollution source indication, especially pollutants related to nitrogen and phosphorus nutrients in the basin.
显示更多 [+] 显示较少 [-]Effects of microcystin-producing and non-microcystin-producing Microcystis on the behavior and life history traits of Chironomus pallidivittatus 全文
2021
Cai, Shenghe | Jia, Yunlu | Donde, Oscar Omondi | Wang, Zhi | Zhang, Junqian | Fang, Tao | Xiao, Bangding | Wu, Xingqiang
Species of the genus Microcystis are among the most notorious cyanobacteria in eutrophic lakes worldwide, with ability present adverse effects on many aquatic organisms. In the surface sediments, Microcystis can be ingested by benthic macroinvertebrates such as Chironomus. However, the potential negative effects of Microcystis on Chironomus life history traits remain unclear. In the present study, we investigated the effect of different Microcystis diets on specific behaviors (burrowing activity, locomotion ability) and life history traits of Chironomus pallidivittatus (Diptera, Chironomidae). We also studied the interactive effects of microcystin-producing M. aeruginosa and temperature (15, 20, and 25 °C) stress on chironomid larvae. The results showed that the inhibitory effect on the cumulative emergence and burrowing activity of larvae was more severe when they were fed M. aeruginosa among the three Microcystis diets groups. Locomotion ability (i.e., locomotor distance and velocity) and adult dry weight decreased significantly in the group fed M. aeruginosa. Locomotion was significantly inhibited and mortality increased when the larvae were fed a mixture of M. aeruginosa and M. wesenbergii, which may have been the result of additive or synergistic effect of the toxins. Under the stress of lower temperature, C. pallidivittatus larvae exhibited weaker locomotion and growth ability, and the emerging adults were mostly male. At both the lower and higher temperature conditions, M. aeruginosa cause cumulative emergence decreased, and sex ratio imbalance, which inhibited the reproduction of larvae from the population perspective. The fourth-instar larvae showed better adaption to Microcystis than did the other instars. This study thus highlights the adverse effects of microcystin-producing M. aeruginosa on Chironomus. It also provides a novel perspective on how environmental factors may influence the behavior and life history traits of chironomid larvae, and how they may respond to cyanobacterial blooms and global warming.
显示更多 [+] 显示较少 [-]Cytotoxic effects of wildfire ashes: In-vitro responses of skin cells 全文
2021
Ré, Ana | Rocha, Ana Teresa | Campos, Isabel | Keizer, Jan Jacob | Gonçalves, Fernando J.M. | Silva, Helena Oliveira da | Pereira, Joana Luísa | Abrantes, Nelson
Wildfires are a complex environmental problem worldwide. The ashes produced during the fire bear metals and PAHs with high toxicity and environmental persistence. These are mobilized into downhill waterbodies, where they can impair water quality and human health. In this context, the present study aimed at assessing the toxicity of mimicked wildfire runoff to human skin cells, providing a first view on the human health hazardous potential of such matrices. Human keratinocytes (HaCaT) were exposed to aqueous extracts of ashes (AEA) prepared from ash deposited in the soil after wildfires burned a pine or a eucalypt forest stand. Cytotoxicity (MTT assay) and changes in cell cycle dynamics (flow cytometry) were assessed. Cell viability decreased with increasing concentrations of AEA, regardless of the ash source, the extracts preparation method (filtered or unfiltered to address the dissolved or the total fractions of contaminants, respectively) or the exposure period (24 and 48 h). The cells growth was also negatively affected by the tested AEA matrices, as evidenced by a deceleration of the progress through the cell cycle, namely from phase G0/G1 to G2. The cytotoxicity of AEA could be related to particulate and dissolved metal content, but the particles themselves may directly affect the cell membrane. Eucalypt ash was apparently more cytotoxic than pine ash due to differential ash metal burden and mobility to the water phase. The deceleration of the cell cycle can be explained by the attempt of cells to repair metal-induced DNA damage, while if this checkpoint and repair pathways are not well coordinated by metal interference, genomic instability may occur. Globally, our results trigger public health concerns since the burnt areas frequently stand in slopes of watershed that serve as recreation sites and sources of drinking water, thus promoting human exposure to wildfire-driven contamination.
显示更多 [+] 显示较少 [-]Declines in heart rate variability associated with short-term PM2.5 exposure were modified by blood pressure control and treatment: A multi-city panel study in China 全文
2021
Xing, Xiaolong | Liu, Fangchao | Yang, Xueli | Liu, Qiong | Wang, Xinyan | Lin, Zhennan | Huang, Keyong | Cao, Jie | Li, Jianxin | Fan, Meng | Chen, Xiaotian | Zhang, Cuizhen | Chen, Shufeng | Lu, Xiangfeng | Gu, Dongfeng | Huang, Jianfeng
Exposure to fine particulate matter (PM₂.₅) was associated with altered heart rate variability (HRV). However, whether blood pressure (BP) control and angiotensin II receptor blocker (ARB) treatment modifies the associations was seldom addressed. Therefore, we conducted a 3-phase panel study among 282 hypertensive subjects aged 35–74 years in four cities of China to address this issue. Real-time personal PM₂.₅ sampling and 24-h ambulatory electrocardiogram monitoring were performed repeatedly in 3 different seasons. Linear mixed-effects models were fitted overall and by control status of BP and ARB treatment to assess the associations between short-term PM₂.₅ exposure and HRV. The average hourly PM₂.₅ concentrations (Mean ± SD) ranged from 19.3 ± 18.2 μg/m³ to 99.4 ± 76.9 μg/m³ across study phases and cities. Generally, PM₂.₅ exposure was associated with decreased hourly and 24-h HRV. However, these adverse impacts were attenuated among patients with controlled BP (<140/90 mmHg). For each 10 μg/m³ increment in moving average of previous 2 days' (MA2d) PM₂.₅ exposure, 24-h SDNN (standard deviation of NN intervals) and rMSSD (root mean square of successive RR interval differences) decreased by 0.89% (95% CI: 0.19%–1.59%) and 2.98% (95% CI: 1.04%–4.89%) among patients with uncontrolled BP (≥140/90 mmHg), whereas no obvious declines were observed among those with controlled BP (Pdᵢffₑᵣₑₙcₑ = 0.007 and 0.022, respectively). Furthermore, ARB treatment alleviated or eliminated PM₂.₅-associated declines in hourly and 24-h HRV among those with uncontrolled BP. For instance, 24-h SDNN decreased by 1.31% (95% CI: 0.54%–2.07%) with a 10 μg/m³ increment in lag 2 days’ PM₂.₅ exposure in ARB nonusers, whereas no obvious changes were observed in ARB users (Pdᵢffₑᵣₑₙcₑ = 0.021). In conclusion, although PM₂.₅ exposure would decrease HRV, better BP control and ARB treatment could attenuate these adverse impacts, which provides supporting evidence for alleviating autonomic dysfunction of hypertension patients living in areas with high-level PM₂.₅.
显示更多 [+] 显示较少 [-]Highly effective remediation of high-arsenic wastewater using red mud through formation of AlAsO4@silicate precipitate 全文
2021
Lu, Zhixu | Qi, Xianjin | Zhu, Xing | Li, Xuezhu | Li, Kongzhai | Wang, Hua
High-arsenic wastewater derived from the metallurgical industry of nonferrous minerals is one of the most dangerous arsenic (As) sources that usually follow the emission of massive hazardous arsenic-bearing wastes. Considering the properties of red mud (RM), we propose an alternative and environmentally friendly method for the efficient remediation of high-arsenic wastewater using RM through formation of AlAsO₄@silicate precipitate, aiming at ''zero-emission of hazardous solid waste''. The results show nearly 100% of arsenic could be stepwisely removed from high-arsenic wastewater and reduce the arsenic concentration from 6100 mg/L to 40 μg/L using RM at room temperature. The highest arsenic removal capacity of RM reaches 101.5 mg/g at a RM-to-wastewater ratio of 40 g/L due to the superior arsenic adsorption and the co-precipitation of arsenate and Al³⁺ to form insoluble aluminum arsenate. The silicate shell of arsenic-loaded RM created at an alkaline condition acts as an arsenic stabilizer, resulting in a leached arsenic concentration of 1.2 mg/L in TCLP tests. RM acts as a highly effective arsenic remover and stabilizer for the disposal of high-arsenic wastewater. It shows great potential for the remediation of wastewater containing heavy metals with varying concentrations to produce clean water available for industrial purpose.
显示更多 [+] 显示较少 [-]The role of NLRP3 in lead-induced neuroinflammation and possible underlying mechanism 全文
2021
Su, Peng | Wang, Diya | Cao, Zipeng | Chen, Jingyuan | Zhang, Jianbin
Neuroinflammation induced by lead exposure (Pb) is a major cause of neurotoxicity of Pb in the central nervous system (CNS). The NLR family, domain of pyrin containing 3 (NLRP3) involves in various neurological diseases, while the question of whether NLRP3 plays a role in lead-induced neuroinflammation has not yet been reported.Developmental and knockout (KO) NLRP3 mice were used to establish two in vivo models, and BV2 cells were used to establish an in vitro model. Behavioral and electrophysiologic tests were used to assess the neurotoxicity of Pb, and immunofluorescence staining was used to assess neuroinflammation. Real-time PCR and western blot were performed to examine the mRNA and protein levels of inflammatory cytokines and NLRP3 inflammasomes. siRNA technology was used to block NLRP3 expression.Pb exposure led to neural injure and microglial activation in the hippocampus region, while minocycline intervention attenuated Pb-induced neurotoxicity by inhibiting neuroinflammation. Pb increased the expression of NLRP3 and promoted cleavage of caspase-1 in mRNA and protein levels, and minocycline partially reversed the effects of Pb on NLRP3 inflammasomes. Blocking of NLRP3 by KO mice or siRNA attenuated neural alterations induced by Pb, weakened microglial activation in vivo and in vitro as well, without affecting the accumulation of Pb. Pb increased autophagic protein levels and phosphorylation of NF-κB, while suppressing autophagy or NF-κB inhibited Pb's effects on NLRP3.NLRP3 is involved in the regulation of Pb-induced neurotoxicity. These findings expand mechanism research of Pb neurotoxicity and may help establish new prevention strategies for Pb neurotoxicity.
显示更多 [+] 显示较少 [-]Correction method of effect of soil moisture on the fluorescence intensity of polycyclic aromatic hydrocarbons based on near-infrared diffuse reflection spectroscopy 全文
2021
Dong, Guimei | Li, Xiaotong | Yang, Renjie | Yang, Yanrong | Liu, Haixue | Wu, Nan
Soil moisture has a strong impact on the fluorescence intensity of PAHs, which is undoubtedly posing a challenge for the development of rapid real-time fluorescence detection technology of PAHs in soil. In this work, NIR diffuse reflectance spectroscopy was used to correct the fluorescence spectra of PAHs in order to reduce the effect of the soil moisture. To establish the correction method, eight soil samples with different moisture contents and a given phenanthrene concentration (8 mg/g) were prepared. The fluorescence and NIR diffuse reflectance spectra were collected for of all samples. It was found that the fluorescence spectra of the soil samples that vary with the moisture content together with the NIR diffuse reflectance spectra were considered for the correction of the fluorescence intensity of phenanthrene related to the moisture content. The results showed that the ratio of the fluorescence intensity at 384 nm to the NIR diffuse reflectance spectrum absorbance at 5184 cm⁻¹ can be used as a correction factor to reduce the effect of the soil moisture on the fluorescence intensity of phenanthrene in the soil. The validity of the correction method was verified by the quantitative analysis of PAHs with different concentrations and soil moisture contents. The results showed better linearity between the fluorescence intensity and the concentration of PAHs after the correction (with a correlation coefficient R of 0.99) than before the correction (with R of 0.86). The relative prediction errors for three unknown samples decreased from 19%, 51% and 40% before the correction to 5%, 13% and 0.44% after the correction, respectively, indicating the feasibility of the detection of PAHs in the soil by the combination of fluorescence and NIR diffuse reflectance spectroscopy.
显示更多 [+] 显示较少 [-]