细化搜索
结果 1811-1820 的 3,207
Fate of parasites and pathogenic bacteria in an anaerobic hybrid reactor followed by downflow hanging sponge system treating domestic wastewater 全文
2015
Tawfik, A. | El-Zamel, T. | Herrawy, A. | El-Taweel, G.
Treatment of domestic wastewater in a pilot-scale upflow anaerobic hybrid (AH) reactor (0.9 m³) in combination with downflow hanging sponge (DHS) system (1.3 m³) was investigated. The combined system was operated at a hydraulic retention time (HRT) of 6.0 h for AH and 3.2 h for DHS system. The total process achieved a substantial reduction of CODₜₒₜₐₗ resulting in an average effluent concentration of only 39 ± 12 mg/l. Moreover, 90 ± 7 % of ammonia was eliminated in the DHS system. Nitrate and nitrite data revealed that 49 ± 3.2 % of the ammonia removal occurred through nitrification process. The removal efficiency of total coliform (TC), fecal coliform (FC), and fecal streptococci (FS) was relatively low in the AH reactor. The major portion of TC, FC, and FS was removed in the DHS system resulting to an average count of 1.7 × 10⁵ ± 1.1 × 10²/100 ml for TC, 7.1 × 10⁴ ± 1.2 × 10²/100 ml for FC, and 7.5 × 10⁴ ± 1.3 × 10²/100 ml for FS in the final effluent. Likely, the combined system was very efficient for the removal of protozoological species such as sarcodins (Entamoeba cysts), flagellates (Giardia cysts), and ciliates (Balantidium cysts). This was not the case for coccidia (Cryptosporidium oocysts), where 36.4 and 27.3 % were detected in the effluent of AH and DHS system, respectively. Only 10 % of intestinal nematode and cestode ova were recorded in the effluent of AH reactor and were completely removed in the DHS system.
显示更多 [+] 显示较少 [-]Elements and polycyclic aromatic hydrocarbons in exhaust particles emitted by light-duty vehicles 全文
2015
Alves, Célia A. | Barbosa, Cátia | Rocha, Sonia | Calvo, Ana | Nunes, Teresa | Cerqueira, Mário | Pio, Casimiro | Karanasiou, Angeliki | Querol, X. (Xavier)
Elements and polycyclic aromatic hydrocarbons in exhaust particles emitted by light-duty vehicles 全文
2015
Alves, Célia A. | Barbosa, Cátia | Rocha, Sonia | Calvo, Ana | Nunes, Teresa | Cerqueira, Mário | Pio, Casimiro | Karanasiou, Angeliki | Querol, X. (Xavier)
The main purpose of this work was to evaluate the chemical composition of particulate matter (PM) emitted by eight different light-duty vehicles. Exhaust samples from petrol and diesel cars (Euro 3 to Euro 5) were collected in a chassis dynamometer facility. To simulate the real-world driving conditions, three ARTEMIS cycles were followed: road, to simulate a fluid traffic flow and urban with hot and cold starts, to simulate driving conditions in cities. Samples were analysed for the water-soluble ions, for the elemental composition and for polycyclic aromatic hydrocarbons (PAHs), respectively, by ion chromatography, inductively coupled plasma atomic emission spectroscopy (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS) and gas chromatography-mass spectrometry (GC-MS). Nitrate and phosphate were the major water-soluble ions in the exhaust particles emitted from diesel and petrol vehicles, respectively. The amount of material emitted is affected by the vehicle age. For vehicles ≥Euro 4, most elements were below the detection limits. Sodium, with emission factors in the ranges 23.5–62.4 and 78.2–227μg km⁻¹, for petrol and diesel Euro 3 vehicles, respectively, was the major element. The emission factors of metallic elements indicated that diesel vehicles release three to five times more than petrol automobiles. Element emissions under urban cycles are higher than those found for on-road driving, being three or four times higher, for petrol vehicles, and two or three times, for diesel vehicles. The difference between cycles is mainly due to the high emissions for the urban cycle with hot start-up. As registered for elements, most of the PAH emissions for vehicles ≥Euro 4 were also below the detection limits. Regardless of the vehicle models or driving cycles, the two- to four-ring PAHs were always dominant. Naphthalene, with emission factors up to 925 μg km⁻¹, was always the most abundant PAH. The relative cancer risk associated with naphthalene was estimated to be up to several orders of magnitude higher than any of the chemical species found in the PM phase. The highest PAH emission factors were registered for diesel-powered vehicles. The condition of the vehicle can exert a decisive influence on both element and PAH emissions.
显示更多 [+] 显示较少 [-]Elements and polycyclic aromatic hydrocarbons in exhaust particles emitted by light-duty vehicles 全文
2015
Alves, Célia A. | Barbosa, Cátia | Rocha, Sónia | Calvo, Ana | Nunes, Teresa | Cerqueira, Mário | Pio, Casimiro | Karanasiou, Angeliki | Querol, Xavier | Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]
The main purpose of this work was to evaluate the chemical composition of particulate matter (PM) emitted by eight different light-duty vehicles. Exhaust samples from petrol and diesel cars (Euro 3 to Euro 5) were collected in a chassis dynamometer facility. To simulate the real-world driving conditions, three ARTEMIS cycles were followed: road, to simulate a fluid traffic flow and urban with hot and cold starts, to simulate driving conditions in cities. Samples were analysed for the water-soluble ions, for the elemental composition and for polycyclic aromatic hydrocarbons (PAHs), respectively, by ion chromatography, inductively coupled plasma atomic emission spectroscopy (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS) and gas chromatography-mass spectrometry (GC-MS). Nitrate and phosphate were the major water-soluble ions in the exhaust particles emitted from diesel and petrol vehicles, respectively. The amount of material emitted is affected by the vehicle age. For vehicles ≥Euro 4, most elements were below the detection limits. Sodium, with emission factors in the ranges 23.5-62.4 and 78.2-227μg km(-1), for petrol and diesel Euro 3 vehicles, respectively, was the major element. The emission factors of metallic elements indicated that diesel vehicles release three to five times more than petrol automobiles. Element emissions under urban cycles are higher than those found for on-road driving, being three or four times higher, for petrol vehicles, and two or three times, for diesel vehicles. The difference between cycles is mainly due to the high emissions for the urban cycle with hot start-up. As registered for elements, most of the PAH emissions for vehicles ≥Euro 4 were also below the detection limits. Regardless of the vehicle models or driving cycles, the two- to four-ring PAHs were always dominant. Naphthalene, with emission factors up to 925 μg km(-1), was always the most abundant PAH. The relative cancer risk associated with naphthalene was estimated to be up to several orders of magnitude higher than any of the chemical species found in the PM phase. The highest PAH emission factors were registered for diesel-powered vehicles. The condition of the vehicle can exert a decisive influence on both element and PAH emissions. | This work was funded by the Portuguese Science Foundation through the project “Source apportionment of URBan Emissions of primary particulate matter”, PTDC/AAC-AMB/117956/2010 (URBE). The ICP-MS and ICP-AES analyses were supported by the AIRUSE project—Testing and Development of air quality mitigation measures in Southern Europe, LIFE 11 ENV/ES/000584. | Peer reviewed
显示更多 [+] 显示较少 [-]Elements and polycyclic aromatic hydrocarbons in exhaust particles emitted by light-duty vehicles 全文
2015 | 1000
Alves, Célia A. | Barbosa, Cátia | Rocha, Sónia | Calvo, Ana | Nunes, Teresa | Cerqueira, Mário | Pio, Casimiro | Karanasiou, Angeliki | Querol, Xavier
The main purpose of this work was to evaluate the chemical composition of particulate matter (PM) emitted by eight different light-duty vehicles. Exhaust samples from petrol and diesel cars (Euro 3 to Euro 5) were collected in a chassis dynamometer facility. To simulate the real-world driving conditions, three ARTEMIS cycles were followed: road, to simulate a fluid traffic flow and urban with hot and cold starts, to simulate driving conditions in cities. Samples were analysed for the water-soluble ions, for the elemental composition and for polycyclic aromatic hydrocarbons (PAHs), respectively, by ion chromatography, inductively coupled plasma atomic emission spectroscopy (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS) and gas chromatography-mass spectrometry (GC-MS). Nitrate and phosphate were the major water-soluble ions in the exhaust particles emitted from diesel and petrol vehicles, respectively. The amount of material emitted is affected by the vehicle age. For vehicles ≥Euro 4, most elements were below the detection limits. Sodium, with emission factors in the ranges 23.5–62.4 and 78.2–227μg km−1, for petrol and diesel Euro 3 vehicles, respectively, was the major element. The emission factors of metallic elements indicated that diesel vehicles release three to five times more than petrol automobiles. Element emissions under urban cycles are higher than those found for on-road driving, being three or four times higher, for petrol vehicles, and two or three times, for diesel vehicles. The difference between cycles is mainly due to the high emissions for the urban cycle with hot start-up. As registered for elements, most of the PAH emissions for vehicles ≥Euro 4 were also below the detection limits. Regardless of the vehicle models or driving cycles, the two- to four-ring PAHs were always dominant. Naphthalene, with emission factors up to 925 μg km−1, was always the most abundant PAH. The relative cancer risk associated with naphthalene was estimated to be up to several orders of magnitude higher than any of the chemical species found in the PM phase. The highest PAH emission factors were registered for diesel-powered vehicles. The condition of the vehicle can exert a decisive influence on both element and PAH emissions.
显示更多 [+] 显示较少 [-]Prenatal exposure to polycyclic aromatic hydrocarbons and cognitive dysfunction in children 全文
2015
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants produced by combustion of fossil fuel and other organic materials. Both experimental animal and human studies have reported the harmful impacts of PAH compounds on fetal growth and neurodevelopment, including verbal IQ of children. Here, we have assessed the association between cognitive function of children and prenatal PAH exposures. The study is part of an ongoing, longitudinal investigation of the health effects of prenatal exposure to air pollution on infants and children in Krakow, Poland. The subjects in this report included 170 children whose mothers were enrolled to the study in the first or second trimester of pregnancy whose cord blood were tested for PAH–DNA adducts and who were assessed at age 7 using the Wechsler Intelligence Scale for Children-Revised (WISC-R). The outcome of a priori interest was depressed verbal IQ index (DepVIQ), which is the difference between WISC-R performance and verbal IQ scores. Prenatal PAH exposure was measured by cord blood PAH–DNA adducts, an individual dosimeter, integrating exposure from various sources of exposure over the gestational period. The estimated effect of prenatal PAH exposure on cognitive function was adjusted in multivariable regression for a set of potential confounders (child’s gender, parity, maternal education, breastfeeding practice, environmental tobacco smoke (ETS), and postnatal PAH exposure). The prevalence of DepVIQ was significantly higher in children with detectable PAH–DNA adducts compared to those with undetectable adducts (13.7 vs. 4.4 %,). Binary multivariable regression documented that the relative risk of DepVIQ increased threefold with a ln-unit increase in cord blood adducts (relative risk (RR) = 3.0, 95 % confidence interval (CI) 1.3–6.8). Postnatal PAH exposure also increased the risk of DepVIQ (RR = 1.6, 95 % CI 1.1–2.5). Long-term exclusive breastfeeding (at least 6 months) showed a protective effect (RR = 0.3, 95 % CI 0.1–0.9). In conclusion, these results provide further evidence that PAHs are harmful to the developing fetal brain with effects extending through childhood, with implications for the academic success of the children.
显示更多 [+] 显示较少 [-]Interference of the co-exposure of mercury with silica-coated iron oxide nanoparticles can modulate genotoxicity induced by their individual exposures—a paradox depicted in fish under in vitro conditions 全文
2015
Interference of the co-exposure of mercury with silica-coated iron oxide nanoparticles can modulate genotoxicity induced by their individual exposures—a paradox depicted in fish under in vitro conditions 全文
2015
The study aimed to assess the genotoxic potential of silica-coated iron oxide nanoparticle functionalized with dithiocarbamate groups (IONP, 100 nm) in vitro exposure alone or its interference with mercury (Hg) co-exposure in the blood of European eel (Anguilla anguilla L.) by evaluating 8-hydroxy-2′-deoxyguanosine (8-OHdG), lipid peroxidation (LPO), and erythrocytic nuclear abnormalities (ENA). Four groups were made: (i) 2 × 10⁶erythrocytes + Roswell Park Memorial Institute-1640 (RPMI-1640) (control), (ii) 2 × 10⁶erythrocytes + IONP (2.5 mg L⁻¹), (iii) 2 × 10⁶erythrocytes + Hg (50 μg L⁻¹), and (iv) 2 × 10⁶erythrocytes + IONP + Hg. Blood plasma was also processed following the previous exposure conditions. Samplings were performed at 0, 2, 4, 8, 16, 24, 48, and 72 h of exposure. The results revealed significant ENA increases at both early (2, 4, 8) and late (16, 24, 48, 72) hours of exposure to IONP alone. However, IONP exposure combined with Hg co-exposure revealed no ENA increase at 2 h, suggesting that IONP-Hg complex formation is efficient to eliminate the DNA damage induced by individual exposure to IONP or Hg at early hours. Hence, the initial occurrence of antagonism between IONP and Hg was perceptible; however, at late hours of exposure, IONP was unable to mitigate the mercury-accrued negative impacts. Plasma exposure to IONP alone displayed a significant increase in 8-OHdG levels at 2 and 48 h of exposure. However, IONP in combination with Hg co-exposure revealed an increase in 8-OHdG levels at all the exposure length (except 16 h), suggesting that both IONP and Hg independently oxidized DNA. In addition, an additive effect on 8-OHdG levels at both early and late hours, and on LPO only at late hours (except 24 h), suggested that DNA is more susceptible to peroxidative damage than lipid.
显示更多 [+] 显示较少 [-]Interference of the co-exposure of mercury with silica-coated iron oxide nanoparticles can modulate genotoxicity induced by their individual exposures: a paradox depicted in fish under in vitro conditions 全文
2015 | 1000
Mohmood, Iram | Ahmad, Iqbal | Asim, Mohammad | Costa, Leonor | Lopes, Cláudia B. | Trindade, Tito | Duarte, Armando C. | Pereira, Eduarda
The study aimed to assess the genotoxic potential of silica-coated iron oxide nanoparticle functionalized with dithiocarbamate groups (IONP, 100 nm) in vitro exposure alone or its interference with mercury (Hg) co-exposure in the blood of European eel (Anguilla anguilla L.) by evaluating 8-hydroxy-2′-deoxyguanosine (8-OHdG), lipid peroxidation (LPO), and erythrocytic nuclear abnormalities (ENA). Four groups were made: (i) 2×106 erythrocytes+Roswell Park Memorial Institute-1640 (RPMI-1640) (control), (ii) 2×106 erythrocytes+IONP (2.5 mg L−1), (iii) 2×106 erythrocytes+ Hg (50 μg L−1), and (iv) 2×106 erythrocytes+IONP+Hg. Blood plasma was also processed following the previous exposure conditions. Samplings were performed at 0, 2, 4, 8, 16, 24, 48, and 72 h of exposure. The results revealed significant ENA increases at both early (2, 4, 8) and late (16, 24, 48, 72) hours of exposure to IONP alone. However, IONP exposure combined with Hg co-exposure revealed no ENA increase at 2 h, suggesting that IONP-Hg complex formation is efficient to eliminate the DNA damage induced by individual exposure to IONP or Hg at early hours. Hence, the initial occurrence of antagonism between IONP and Hg was perceptible; however, at late hours of exposure, IONP was unable to mitigate the mercury-accrued negative impacts. Plasma exposure to IONP alone displayed a significant increase in 8- OHdG levels at 2 and 48 h of exposure. However, IONP in combination with Hg co-exposure revealed an increase in 8- OHdG levels at all the exposure length (except 16 h), suggesting that both IONP and Hg independently oxidized DNA. In addition, an additive effect on 8-OHdG levels at both early and late hours, and on LPO only at late hours (except 24 h), suggested that DNA is more susceptible to peroxidative damage than lipid.
显示更多 [+] 显示较少 [-]Soil erosion evaluation in a rapidly urbanizing city (Shenzhen, China) and implementation of spatial land-use optimization 全文
2015
Zhang, Wenting | Huang, Bo
Soil erosion has become a pressing environmental concern worldwide. In addition to such natural factors as slope, rainfall, vegetation cover, and soil characteristics, land-use changes—a direct reflection of human activities—also exert a huge influence on soil erosion. In recent years, such dramatic changes, in conjunction with the increasing trend toward urbanization worldwide, have led to severe soil erosion. Against this backdrop, geographic information system-assisted research on the effects of land-use changes on soil erosion has become increasingly common, producing a number of meaningful results. In most of these studies, however, even when the spatial and temporal effects of land-use changes are evaluated, knowledge of how the resulting data can be used to formulate sound land-use plans is generally lacking. At the same time, land-use decisions are driven by social, environmental, and economic factors and thus cannot be made solely with the goal of controlling soil erosion. To address these issues, a genetic algorithm (GA)-based multi-objective optimization (MOO) approach has been proposed to find a balance among various land-use objectives, including soil erosion control, to achieve sound land-use plans. GA-based MOO offers decision-makers and land-use planners a set of Pareto-optimal solutions from which to choose. Shenzhen, a fast-developing Chinese city that has long suffered from severe soil erosion, is selected as a case study area to validate the efficacy of the GA-based MOO approach for controlling soil erosion. Based on the MOO results, three multiple land-use objectives are proposed for Shenzhen: (1) to minimize soil erosion, (2) to minimize the incompatibility of neighboring land-use types, and (3) to minimize the cost of changes to the status quo. In addition to these land-use objectives, several constraints are also defined: (1) the provision of sufficient built-up land to accommodate a growing population, (2) restrictions on the development of land with a steep slope, and (3) the protection of agricultural land. Three Pareto-optimal solutions are presented and analyzed for comparison. GA-based MOO is found able to solve the multi-objective land-use problem in Shenzhen by making a tradeoff among competing objectives. The outcome is alternative choices for decision-makers and planners.
显示更多 [+] 显示较少 [-]Heritage materials and biofouling mitigation through UV-C irradiation in show caves: state-of-the-art practices and future challenges 全文
2015
Borderie, Fabien | Alaoui-Sossé, Badr | Aleya, Lotfi
Biofouling, i.e., colonization of a given substrate by living organisms, has frequently been reported for heritage materials and particularly on stone surfaces such as building facades, historical monuments, and artworks. This also concerns subterranean environments such as show caves, in which the installation of artificial light for tourism has led to the proliferation of phototrophic microorganisms. In Europe nowadays, the use of chemicals in these very sensitive environments is scrutinized and regulated by the European Union. New and environmentally friendly processes must be developed as alternative methods for cave conservation. For several years, the UV irradiation currently used in medical facilities and for the treatment of drinking water has been studied as a new innovative method for the conservation of heritage materials. This paper first presents a review of the biofouling phenomena on stone materials such as building facades and historical monuments. The biological disturbances induced by tourist activity in show caves are then examined, with special attention given to the methods and means to combat them. Thirdly, a general overview is given of the effects of UV-C on living organisms, and especially on photosynthetic microorganisms, through different contexts and studies. Finally, the authors’ own experiments and findings are presented concerning the study and use of UV-C irradiation to combat algal proliferation in show caves. Both laboratory and in situ results are summarized and synthesized from their previously published works. The application of UV in caves is discussed and further experiments are proposed to enhance research in this domain.
显示更多 [+] 显示较少 [-]An analytical deterministic model for simultaneous phytoremediation of Ni and Cd from contaminated soils 全文
2015
Davari, Masoud | Homaee, Mehdi | Rahnemaie, Rasoul
Soil contamination by heavy metals, due to human activities, is not often limited to a single contaminant. The objective of this study was to develop a simple model for phytoextracting separate and combined Ni and Cd from contaminated soils. The study was further aimed to study phytoextraction potential of ornamental kale and land cress grown in soils contaminated with separate and combined Ni and Cd metals. The results indicated that elevated Ni and Cd concentrations in soil inhibit growth of both ornamental kale and land cress plants. In Ni + Cd treatments, growth and development of both plants were more affected than in either Ni or Cd treatments. Further, in Ni + Cd treatments, Ni concentration in tissues of both plants was increased by increasing soil Ni concentration under various Cd concentrations. At constant Ni concentration, addition of Cd did not appreciably changed Ni content of plant tissues. Land cress demonstrated higher tolerance to soil contamination by Ni and Cd compared to ornamental kale. It also demonstrated higher phytoextraction potential for soil Cd than ornamental kale. Enhanced bioavailability of Ni and Cd ions, due to competitive adsorption and desorption reactions, had no reasonable effect on metal ion accumulation in plant tissues. This indicates that at relatively high soil contamination, metal ion adsorption is no longer a limiting factor for phytoremediation. The newly proposed model, which assumes that metal uptake rate inversely depends on total soil metal ion concentration, reasonably well predicted the cleanup time of Ni, Cd, and Ni at the presence of Cd from the contaminated soils. The model also predicts that phytoremediation process takes much longer time when soil is contaminated by multi-metal ions.
显示更多 [+] 显示较少 [-]Genetic determinants involved in the biodegradation of naphthalene and phenanthrene in Pseudomonas aeruginosa PAO1 全文
2015
Qi, Jing | Wang, Bobo | Li, Jing | Ning, Huanhuan | Wang, Yingjuan | Kong, Weina | Shen, Lixin
Pseudomonas sp. are predominant isolates of degradation-competent strains while very few studies have explored the degradation-related genes and pathways in most of the degrading strains. P. aeruginosa PAO1 was found capable of degrading naphthalene and phenanthrene efficiently. In order to investigate the degradation-related genes of naphthalene and phenanthrene in P. aeruginosa PAO1, a random promoter library of about 5760 strains was constructed. Thirty-two clones for differentially expressed promoters were obtained by screening in the presence of sub-inhibitory concentration of naphthalene and phenanthrene. Among them, 13 genes were up-regulated and 15 were down-regulated in the presence of naphthalene as well as phenanthrene. The four remaining genes have different regulation tendencies by naphthalene or phenanthrene. By comparing the growth between the wild type and mutants as well as the complementations, the roles of seven selected up-regulated genes on naphthalene and phenanthrene degradation were investigated. Five of the seven selected up-regulated genes, like PA2666 and PA4780, were found playing key roles on the degradation in P. aeruginosa PAO1. Also, the results imply that these genes participate in the overlapping part of naphthalene and phenanthrene degradation pathways in PAO1. Results in the article offer the convenience quick method and platform for searching degradation-related genes. It also laid a foundation for understanding of the role of the regulated genes.
显示更多 [+] 显示较少 [-]Catalytic ozonation of petroleum refinery wastewater utilizing Mn-Fe-Cu/Al2O 3 catalyst 全文
2015
Chen, Chunmao | Yoza, Brandon A. | Wang, Yandan | Wang, Ping | Li, Qing X. | Guo, Shaohui | Yan, Guangxu
There is of great interest to develop an economic and high-efficient catalytic ozonation system (COS) for the treatment of biologically refractory wastewaters. Applications of COS require options of commercially feasible catalysts. Experiments in the present study were designed to prepare and investigate a novel manganese–iron–copper oxide-supported alumina-assisted COS (Mn–Fe–Cu/Al₂O₃–COS) for the pretreatment of petroleum refinery wastewater. The highly dispersed composite metal oxides on the catalyst surface greatly promoted the performance of catalytic ozonation. Hydroxyl radical mediated oxidation is a dominant reaction in Mn–Fe–Cu/Al₂O₃–COS. Mn–Fe–Cu/Al₂O₃–COS enhanced COD removal by 32.7 % compared with a single ozonation system and by 8–16 % compared with Mn–Fe/Al₂O₃–COS, Mn–Cu/Al₂O₃–COS, and Fe–Cu/Al₂O₃–COS. The O/C and H/C ratios of oxygen-containing polar compounds significantly increased after catalytic ozonation, and the biodegradability of petroleum refinery wastewater was significantly improved. This study illustrates potential applications of Mn–Fe–Cu/Al₂O₃–COS for pretreatment of biologically refractory wastewaters.
显示更多 [+] 显示较少 [-]Dynamics of dissolved organic matter during four storm events in two forest streams: source, export, and implications for harmful disinfection byproduct formation 全文
2015
Yang, Liyang | Hur, Jin | Lee, Sonmin | Chang, Soon-Woong | Shin, Hyun-Sang
Dynamics of river dissolved organic matter (DOM) during storm events have profound influences on the downstream aquatic ecosystem and drinking water safety. This study investigated temporal variations in DOM during four storm events in two forest headwater streams (the EH and JH brooks, South Korea) and the impacts on the disinfection byproducts (DBPs) formation potential. The within-event variations of most DOM quantity parameters were similar to the flow rate in the EH but not in the larger JH brook. The dissolved organic carbon (DOC) showed clockwise and counterclockwise hysteresis with the flow rate in the EH and JH brooks, respectively, indicating the importance of both flow path and DOM source pool size in determining the effects of storm events. The stream DOM became less aromatic/humified from the first to the last event in both brooks, probably due to the increasing fresh plant pool and the decreasing leaf litter pool during the course of rainy season. The DOC export during each event increased 1.3–2.7- and 1.1–7.0-fold by stormflows in the EH and JH brooks, respectively. The leaf litter and soil together was the major DOM source, particularly during early events. The enhanced DOM export probably increases the risks of DBPs formation in disinfection, as indicated by a strong correlation observed between DOC and trihalomethanes formation potential (THMFP). High correlations between two humic-like fluorescent components and THMFP further suggested the potential of assessing THMFP with in situ fluorescence sensors during storms.
显示更多 [+] 显示较少 [-]