细化搜索
结果 1811-1820 的 6,473
Phytoremediation of polluted soils and waters by native Qatari plants: Future perspectives
2020
Al-Thani, R.F. | Yasseen, B.T.
Because pollution is predicted to worsen and sources of quality water for agriculture and other human activities are limited, many countries have been motivated to seek novel water sources. Qatar relies on groundwater and water desalinization to meet its water needs, and additional water resources will be needed to avoid unexpected crises in the future. Industrial wastewater (IWW) is an alternative water source, and much research activities should be focused on developing innovative and contemporary approaches to removing pollutants from IWW. Phytoremediation methods, shown to be efficient methods of removing and degrading contaminants of various kinds from polluted waters and soils, require knowledge of the native plants and associated microorganisms. In Qatar, many native plants (monocot and dicot, indigenous or introduced) have been shown to be greatly effective in remediating polluted areas. This article is a guide for Qatari scientists aiming to identify promising native plants and associated microbes for IWW phytoremediation. In it, we review the basic components of bioremediation and summarize the principle phytoremediation approaches and preferred recycling options. The multiple mechanisms and methods of phytoremediation for cleansing polluted soils and waters are also discussed as are details of the metabolic reactions degrading the organic components of oil and gas. Finally, heavy metal accumulation is addressed. Wastewater from industrial and domestic activities is currently being used to create green areas around Doha, Qatar, and such areas could be at risk of contamination. Many native Qatari plants and soil-dwelling microbes are efficient at removing organic and inorganic contaminants from polluted soils and waters, and some are promising candidates for achieving a clean environment free of contaminants.
显示更多 [+] 显示较少 [-]Biodegradation of plastic monomer 2,6-dimethylphenol by Mycobacterium neoaurum B5-4
2020
Ji, Junbin | Zhang, Yanting | Liu, Yongchuang | Zhu, Pingping | Yan, Xin
2,6-Dimethylphenol (2,6-DMP), an important chemical intermediate and the monomer of plastic polyphenylene oxide, is widely used in chemical and plastics industry. However, the pollution problem of 2,6-DMP residues is becoming increasingly serious, which is harmful to some aquatic animals. Microbial degradation provided an effective approach to eliminate DMPs in nature, which is considered as a prospective way to remediate DMPs-contaminated environments. But the 2,6-DMP-degrading bacteria is not available and the molecular mechanism of 2,6-DMP degradation is unclear as well. Here, a 2,6-DMP-degrading bacterium named B5-4 was isolated and identified as Mycobacterium neoaurum. M. neoaurum B5-4 could utilize 2,6-DMP as the sole carbon source for growth. Furthermore, M. neoaurum B5-4 could degrade 2,6-DMP with concentrations ranging from 1 to 500 mg L⁻¹. Six intermediate metabolites of 2,6-DMP were identified and a metabolic pathway of 2,6-DMP in M. neoaurum B5-4 was proposed, in which 2,6-DMP was initially converted to 2,6-dimethyl-hydroquinone and 2,6-dimethyl-3-hydroxy-hydroquinone by two consecutive hydroxylations at C-4 and γ position; 2,6-dimethyl-3-hydroxy-hydroquinone was then subjected to aromatic ring ortho-cleavage to produce 2,4-dimethyl-3-hydroxymuconic acid, which was further transformed to citraconate, and subsequently into TCA cycle. In addition, toxicity bioassay of 2,6-DMP in water using zebrafish indicates that 2,6-DMP is toxic to zebrafish and M. neoaurum B5-4 could effectively eliminate 2,6-DMP in water to protect zebrafish from 2,6-DMP-induced death. This work provides a potential strain for bioremediation of 2,6-DMP-contaminated environments and lays a foundation for elucidating the molecular mechanism and genetic determinants of 2,6-DMP degradation.
显示更多 [+] 显示较少 [-]Serum concentrations of persistent organic pollutants and the metabolic syndrome in Akwesasne Mohawks, a Native American community
2020
Aminov, Zafar | Carpenter, David O.
The metabolic syndrome (MetS) is a group of diseases that tend to occur together, including diabetes, hypertension, central obesity, cardiovascular disease and hyperlipidemia. Exposure to persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) has been associated with increased risk of development of several of the components of the MetS. The goal of this study is to determine whether the associations with POPs are identical for each of the components and for the MetS. The subject population was 601 Native Americans (Akwesasne Mohawks) ages 18 to 84 who answered a questionnaire, were measured for height and weight and provided blood samples for clinical chemistries (serum lipids and fasting glucose) and analysis of 101 PCB congeners and three OCPs [dichlorodiphenyldichloroethylene (DDE), hexachlorobenzene (HCB) and mirex]. Associations between concentrations of total PCBs and pesticides, as well as various PCB congener groups with each of the different components of the MetS were determine so as to ask whether there were similar risk factors for all components of the MetS. After adjustment for other contaminants, diabetes and hypertension were strongly associated with lower chlorinated and mono-ortho PCBs, but not other PCB groups or pesticides. Obesity was most closely associated with highly chlorinated PCBs and was negatively associated with mirex. High serum lipids were most strongly associated with higher chlorinated PCBs and PCBs with multiple ortho-substituted chlorines, as well as total pesticides, DDE and HCB. Cardiovascular disease was not closely associated with levels of any of the measured POPs. While exposure to POPs is associated with increased risk of most of the various diseases comprising the MetS, the specific contaminants associated with risk of the component diseases are not the same.
显示更多 [+] 显示较少 [-]Microalgae-based bioremediation of water contaminated by pesticides in peri-urban agricultural areas
2020
García-Galán, María Jesús | Monllor-Alcaraz, Luis Simón | Postigo, Cristina | Uggetti, Enrica | López de Alda, Miren | Díez-Montero, Rubén | García, Joan
The present study evaluated the capacity of a semi-closed, tubular horizontal photobioreactor (PBR) to remove pesticides from agricultural run-off. The study was carried out in summer (July) to study its efficiency under the best conditions (highest solar irradiation). A total of 51 pesticides, including 10 transformation products, were selected and investigated based on their consumption rate and environmental relevance. Sixteen of them were detected in the agricultural run-off, and the estimated removal efficiencies ranged from negative values, obtained for 3 compounds, namely terbutryn, diuron and imidacloprid, to 100%, achieved for 10 compounds. The acidic herbicide MCPA was removed by 88% in average, and the insecticides 2,4-D and diazinon showed variable removals, between 100% and negative values. The environmental risk associated to the compounds still present in the effluent of the PBR was evaluated using hazard quotients (HQs), calculated using the average and highest measured concentrations of the compounds. HQ values > 10 (meaning high risk) were obtained for imidacloprid (21), between 1 and 10 (meaning moderate risk) for 2,4-D (2.8), diazinon (4.6) and terbutryn (1.5), and <1 (meaning low risk) for the remaining compounds diuron, linuron and MCPA. The PBR treatment yielded variable removals depending on the compound, similarly to conventional wastewater treatment plants. This study provides new data on the capacity of microalgae-based treatment systems to eliminate a wide range of priority pesticides under real/environmental conditions.
显示更多 [+] 显示较少 [-]Natural gas leaks and tree death: A first-look case-control study of urban trees in Chelsea, MA USA
2020
Schollaert, Claire | Ackley, Robert C. | DeSantis, Andy | Polka, Erin | Scammell, Madeleine K.
Urban vegetation is associated with numerous public health benefits; however, urban tree canopies may be threatened by fugitive methane exposure from leaky natural gas distribution systems. Despite anecdotal evidence of the harmful impacts of natural gas leaks on urban tree decline, the relationship between soil gas exposure and tree health has not been formally quantified in an urban setting. We conducted a case-control study to compare soil natural gas exposure in sidewalk tree pits of healthy and dead or dying trees in Chelsea, Massachusetts, during summer 2019. We measured soil concentrations of methane and oxygen at four points around the trunks of 84 case and 97 control trees. We determined that case trees had 30 times the odds of being exposed to detectable levels of soil methane relative to the control trees sampled (95% CI = 3.93, 229). Among tree pits with elevated soil gas, we also found that methane concentrations were highest on the side of the tree pit closest to the street. These results contribute evidence to support the widespread belief that soil methane exposure can negatively impact urban tree health. They also suggest that fugitive methane leakage from urban natural gas distribution systems beneath the street surface may be responsible for elevated soil gas concentrations in sidewalk tree pits and subsequent tree death.
显示更多 [+] 显示较少 [-]Emerging polar pollutants in groundwater: Potential impact of urban stormwater infiltration practices
2020
Pinasseau, Lucie | Wiest, Laure | Volatier, Laurence | Mermillod-Blondin, Florian | Vulliet, Emmanuelle
The quality of groundwater (GW) resources is decreasing partly due to chemical contaminations from a wide range of activities, such as industrial and agricultural enterprises and changes in land-use. In urban areas, one potential major pathway of GW contamination is associated with urban water management practices based on stormwater runoff infiltration systems (SIS). Data on the performance of the upper layer of soil and the unsaturated zone of infiltration basins to limit the contamination of GW by hydrophilic compounds are lacking. With this aim, the impact of infiltration practices on GW contamination was assessed for 12 pesticides and 4 pharmaceuticals selected according to their ecotoxicological relevance and their likelihood of being present in urban stormwater and GW. For this purpose, 3 campaigns were conducted at 4 SIS during storm events. For each campaign, passive samplers based on the use of Empore™ disk were deployed in GW wells upstream and downstream of SIS, as well as in the stormwater runoff entering the infiltration basins. Upstream and downstream GW contaminations were compared to evaluate the potential effect of SIS on GW contamination and possible relationships with stormwater runoff composition were examined. Our results showed two interesting opposite trends: (i) carbendazim, diuron, fluopyram, imidacloprid and lamotrigine had concentrations significantly increasing in GW impacted by infiltration, indicating a contribution of SIS to GW contamination, (ii) atrazine, simazine and 2 transformation products exhibited concentrations significantly decreasing with infiltration due to a probable dilution of historic GW contaminants with infiltrated stormwater runoff. The other 7 contaminants showed no general trend. This study demonstrates that passive samplers deployed in GW wells enabled the capture of emerging polar pollutants present at very low concentrations and allowed the assessment of infiltration practices on GW quality. New data on GW and urban stormwater are provided for poorly studied hazardous compounds.
显示更多 [+] 显示较少 [-]Trace elements in sediments and fish from Atrato River: an ecosystem with legal rights impacted by gold mining at the Colombian Pacific
2020
Palacios-Torres, Yuber | de la Rosa, Jesus D. | Olivero-Verbel, Jesus
The Atrato watershed is a rainforest that supports exceptional wildlife species and is considered one of the most biodiversity-rich areas on the planet, currently threatened by massive gold mining. Aimed to protect this natural resource, the Constitutional Court of Colombia declared the river subject to rights. The objective of this study was to quantify trace elements in sediments and fish from Atrato watershed, assessing their environmental and human health risk. Forty-two trace elements were quantified using ICP-MS. Thirty-one elements increased their concentration downstream the river. Concentration Factors (CF) suggest sediments were moderately polluted by Cr, Cu, Cd, and strongly polluted by As. Most stations had Cr (98%) and Ni (78%) concentrations greater than the Probable Effect Concentration (PEC) criteria. Together, toxic elements generate a Pollution Load Index (PLI) and a Potential Ecological Risk Index (RI) that categorized 54% of the sediments as polluted, and 90% as moderate polluted, respectively. Hemiancistrus wilsoni, a low trophic guild fish species, had the greater average levels for Ni, Cu, As and Cd, among other elements. Rubidium and Cs showed a positive correlation with fish trophic level, suggesting these two metals biomagnify in the food chain. The Hazard Quotient (HQ) for As was greater than 1 for several species, indicating a potential risk to human health. Collectively, data suggest gold mining carried out in this biodiversity hotspot releases toxic elements that have abrogated sediment quality in Atrato River, and their incorporation in the trophic chain constitutes a large threat on environmental and human health due to fish consumption. Urgent legal and civil actions should be implemented to halt massive mining-driven deforestation to enforce Atrato River rights.
显示更多 [+] 显示较少 [-]Personal exposure to fine particulate matter and renal function in children: A panel study
2020
Liu, Miao | Guo, Wenting | Cai, Yunyao | Yang, Huihua | Li, Wenze | Yang, Liangle | Lai, Xuefeng | Fang, Qin | Ma, Lin | Zhu, Rui | Zhang, Xiaomin
There is a lack of evidence regarding the association of short-term exposure to fine particulate matter (PM₂.₅) with renal function in children and its underlying mechanism. We included 105 children aged 4–13 years from a panel study conducted in Wuhan, China with up to 3 repeated visits across 3 seasons from October 9, 2017 to June 1, 2018. We measured personal real-time PM₂.₅ exposure concentration continuously for 72 h preceding each round of health examinations that included serum creatinine and cytokines. Linear mixed-effects models were performed to estimate the effects of PM₂.₅ on estimated glomerular filtration rate (eGFR) over various lag times, and a mediation analysis was applied for the role of cytokines in association between PM₂.₅ and eGFR. Results showed that personal exposure to PM₂.₅ was dose-responsive related to decreased eGFR within lag 2 days. The effect was the strongest at lag 0 day with estimation of −1.69% [95% confidence interval (CI): -2.27%, −1.10%] in eGFR by a 10-μg/m³ increase in PM₂.₅, and reached peak at lag 3 h, then declined over time. Such inverse relationships were more evident among children aged 4–6 years, or boys or those who lived proximity to major roadways <300 m. Notably, eGFR still held on to decrease even when PM₂.₅ was below Class II Chinese ambient air quality standard at lag 0 day. Moreover, the effect of PM₂.₅ on eGFR was significantly reduced in children with high and medium levels of serum chemokine ligand 27 (CCL27), but not in those with low CCL27. Furthermore, CCL27 was positively relevant to PM₂.₅, and mediated proportion of CCL27 ranged from 3.75% to 6.61% in relations between PM₂.₅ and decreased eGFR over various lag times. In summary, short-term PM₂.₅ exposure might be dose-responsive associated with reduced eGFR whereby a mechanism partly involving CCL27 among healthy children.
显示更多 [+] 显示较少 [-]Vancomycin exposure caused opportunistic pathogens bloom in intestinal microbiome by simulator of the human intestinal microbial ecosystem (SHIME)
2020
Liu, Lei | Wang, Qing | Wu, Xinyan | Qi, Hongmei | Das, Ranjit | Lin, Huai | Shi, Jingliang | Wang, Siyi | Yang, Jing | Xue, Yingang | Mao, Daqing | Luo, Yi
Antibiotics are emerging organic pollutants posing high health risks to humans by causing human intestinal microbial disorders with increasing abundances of opportunistic pathogens, and fecal microbiota transplantation (FMT) has been confirmed to restore the dysbiosis of gut flora in many kinds of intestinal disease. However, to date, few studies have focused on the bloomed opportunistic pathogens associated human disease-related pathways as well as antibiotic resistance genes (ARGs) after vancomycin exposure, and there is limited information on using FMT for restoration of intestinal microbiome affected by antibiotics. Therefore, this study investigated effects of vancomycin on the opportunistic pathogens, human disease-related pathways as well as ARGs in human gut, and the restoration of intestinal microbiome by FMT. Results indicated that vancomycin treatment substantially increased human disease-related pathways and decreased abundances of ARGs. Besides, the bloomed opportunistic pathogens including Achromobacter, Klebsiella, and Pseudomonas, caused by vancomycin exposure, were positively correlated with human disease-related pathways. The microbiota abundance and genes of human disease-related pathways and antibiotic resistance showed a remarkable return towards baseline after FMT, but not for natural recovery. These findings suggest that impacts of vancomycin on human gut are profound and FMT will be a promising strategy in clinical application that can restore the dysbiosis of gut microbiota, which may be valuable for directing future work.
显示更多 [+] 显示较少 [-]A comprehensive assessment of microbiome diversity in Tenebrio molitor fed with polystyrene waste
2020
Urbanek, Aneta K. | Rybak, Justyna | Wrobel, Magdalena | Leluk, Karol | Mirończuk, Aleksandra M.
Recently it was demonstrated that mealworm (Tenebrio molitor) larvae consume and biodegrade polystyrene. Thus, in this study a breeding investigation with various types of polystyrene was performed to follow the changes in the gut microbiome diversity. Polystyrene used for packaging purposes (PSp) and expanded polystyrene (EPS) were perceived as more favorable and attacked more frequently by mealworms compared to raw polystyrene (PS) and material commercially available for parcels (PSp). Although our studies showed that larvae could bite and chew selected materials, they are not able to degrade and use them for consumption purposes. In a next-generation sequencing experiment, among all samples, seven classes, Gammaproteobacteria, Bacilli, Clostridia, Acidobacteria, Actinobacteria, Alphaproteobacteria and Flavobacteria, were indicated as the most abundant, whereas the predominant genera were Enterobacter, Lactococcus and Enterococcus. Additionally, we isolated three bacteria strains able to use diverse types of bioplastic as a sole carbon source. The strains with biodegradable activity against bioplastic were identified as species of the genera Klebsiella, Pseudomonas and Serratia. The presence of a bacterial strain able to degrade bioplastic may suggest a potential niche for further investigations.
显示更多 [+] 显示较少 [-]