细化搜索
结果 1821-1830 的 3,208
Effects of N and P enrichment on competition between phytoplankton and benthic algae in shallow lakes: a mesocosm study 全文
2015
Zhang, Xiufeng | Mei, Xueying | Gulati, R. D. | Liu, Zhengwen
Competition for resources between coexisting phytoplankton and benthic algae, but with different habitats and roles in functioning of lake ecosystems, profoundly affects dynamics of shallow lakes in the process of eutrophication. An experiment was conducted to test the hypothesis that combined enrichment with nitrogen (N) and phosphorus (P) would be a greater benefit to phytoplankton than benthic algae. The growth of phytoplankton and benthic algae was measured as chlorophyll a (Chl a) in 12 shallow aquatic mesocosms supplemented with N, P, or both. We found that enrichment with N enhanced growth of benthic algae, but not phytoplankton. P enrichment had a negative effect on benthic algal growth, and no effect on the growth of phytoplankton. N+P enrichment had a negative effect on benthic algae, but enhanced the growth of phytoplankton, thus reducing the proportion of benthic algae contributing to the combined biomass of these two groups of primary producers. Thus, combined N+P enrichment is more favorable to phytoplankton in competition with benthic algae than enrichment with either N or P alone. Our study indicates that combined enrichment with N+P promotes the dominance of phytoplankton over benthic algae, with consequences for the trophic dynamics of shallow lake ecosystems.
显示更多 [+] 显示较少 [-]Utilizing heavy metal-laden water hyacinth biomass in vermicomposting 全文
2015
Tereshchenko, Natalya N. | Akimova, Elena E. | Pisarchuk, Anna D. | Yunusova, Tatyana V. | Minaeva, Oksana M.
We studied the efficiency of water treatment by water hyacinth (Eichhornia crassipes) from heavy metals (Zn, Cd, Pb, Cu), as well as a possibility of using water hyacinth biomass obtained during treatment for vermicomposting by Eisenia fetida and the vermicompost quality in a model experiment. The results showed that the concentration of heavy metals in the trials with water hyacinth decreased within 35 days. We introduced water hyacinth biomass to the organic substrate for vermicomposting, which promoted a significant weight gain of earthworms and growth in their number, as well as a 1.5- to 3-fold increase in coprolite production. In the trial with 40 % of Eichhornia biomass in the mixture, we observed a 26-fold increase in the number and a 16-fold weight gain of big mature individuals with clitellum; an increase in the number of small individuals 40 times and in the number of cocoons 140 times, as compared to the initial substrate. The utilization of water hyacinth biomass containing heavy metals in the mixture led to a 10-fold increase in the number of adult individuals and cocoons, which was higher than in control. We found out that adding 10 % of Eichhornia biomass to the initial mixture affected slightly the number of microorganisms and their species diversity in the vermicompost. Adding Eichhornia biomass with heavy metals reduced the total number of microorganisms and sharply diminished their species diversity. In all trials, adding water hyacinth in the mixture for vermicomposting had a positive impact on wheat biometric parameters in a 14-day laboratory experiment, even in the trial with heavy metals.
显示更多 [+] 显示较少 [-]Citrate gold nanoparticle exposure in the marine bivalve Ruditapes philippinarum: uptake, elimination and oxidative stress response 全文
2015
Volland, Moritz | Hampel, Miriam | Martos-Sitcha, Juan A. | Trombini, Chiara | Martínez-Rodríguez, Gonzalo | Blasco, Julián
Citrate gold nanoparticle exposure in the marine bivalve Ruditapes philippinarum: uptake, elimination and oxidative stress response 全文
2015
Volland, Moritz | Hampel, Miriam | Martos-Sitcha, Juan A. | Trombini, Chiara | Martínez-Rodríguez, Gonzalo | Blasco, Julián
Gold nanoparticles (AuNPs) are considered an important nano-sized component of the twenty-first century. Due to their unique physical and chemical properties, they are being used and developed for a wide range of promising applications in medicine, biology and chemistry. Notwithstanding their useful aspects, in recent years concern has been raised over their ability to enter cells, organelles and nuclei and provoke oxidative stress. In a laboratory-based experiment, the non-target marine bivalve Ruditapes philippinarum was used as a model organism. Uptake, elimination and molecular effects under short-term and sub-chronic exposure conditions to an environmental relevant concentration (0.75 μg L⁻¹) of weakly agglomerating citrate AuNPs (∼20 nm) were studied. Our results demonstrate that at the tested concentration, the particles are readily taken up into the digestive gland > gills and can produce significant changes (p < 0.05) in oxidative stress and inflammatory response markers, as measured by phase II antioxidant enzymes and q-PCR gene expression analysis. However, the overall magnitude of responses was low, and oxidative damage was not provoked. Further, a significant elimination of Au from the digestive tract within a 7-day purification period was observed, with excretion being an important pathway. In conclusion, short-term and sub-chronic exposure to an environmental relevant concentration of citrate-stabilized AuNPs cannot be considered toxic to our model organism, while some further consideration should be given to chronic exposure effects.
显示更多 [+] 显示较少 [-]Citrate gold nanoparticle exposure in the marine bivalve Ruditapes philippinarum: uptake, elimination and oxidative stress response 全文
2015
Volland, Moritz | Hampel, Miriam | Martos-Sitcha, Juan Antonio | Trombini, Chiara | Martínez-Rodríguez, Gonzalo | Blasco, Julián | Junta de Andalucía | European Commission | Ministerio de Economía y Competitividad (España)
Gold nanoparticles (AuNPs) are considered an important nano-sized component of the twenty-first century. Due to their unique physical and chemical properties, they are being used and developed for a wide range of promising applications in medicine, biology and chemistry. Notwithstanding their useful aspects, in recent years concern has been raised over their ability to enter cells, organelles and nuclei and provoke oxidative stress. In a laboratory-based experiment, the non-target marine bivalve Ruditapes philippinarum was used as a model organism. Uptake, elimination and molecular effects under short-term and sub-chronic exposure conditions to an environmental relevant concentration (0.75 μg L−1) of weakly agglomerating citrate AuNPs (∼20 nm) were studied. Our results demonstrate that at the tested concentration, the particles are readily taken up into the digestive gland > gills and can produce significant changes (p < 0.05) in oxidative stress and inflammatory response markers, as measured by phase II antioxidant enzymes and q-PCR gene expression analysis. However, the overall magnitude of responses was low, and oxidative damage was not provoked. Further, a significant elimination of Au from the digestive tract within a 7-day purification period was observed, with excretion being an important pathway. In conclusion, short-term and sub-chronic exposure to an environmental relevant concentration of citrate-stabilized AuNPs cannot be considered toxic to our model organism, while some further consideration should be given to chronic exposure effects. | This work was funded by the regional government of Andalusia (Junta de Andalucía) project PE2011-RNM-7812 and the Spanish government Plan Nacional I+D+I project CTM2012-3872-C03-03, as well as supported by the Erasmus Mundus Ph.D. fellowship in Marine and Coastal Management to M. V. (as coordinated by the University of Cadiz, Spain). | Peer reviewed
显示更多 [+] 显示较少 [-]The effect of arsenic on some antioxidant enzyme activities and lipid peroxidation in various tissues of mirror carp (Cyprinus carpio carpio) 全文
2015
Altikat, Sayit | Uysal, Kazim | Kuru, Halil Isa | Kavasoglu, Mustafa | Ozturk, Gul Nihan | Kucuk, Aysegul
The effect of arsenic bioaccumulation in liver, kidney, skin, muscle, and intestinal tissues of mirror carp (Cyprinus carpio carpio) was investigated on lipid peroxidation and certain antioxidant enzyme activities. In this study, three aquarium groups were formed from mirror carp: control group, 0.5-, and 1-mg/L arsenic concentrations. The fish were dissected after 1 month. Arsenic bioaccumulation, malondialdehyde (MDA) levels, catalase (CAT), and superoxide dismutase (SOD) enzyme activities were determined in the tissues. Results showed that arsenic was accumulated in liver, kidney, muscle, skin, and intestinal tissues. As the final product of lipid peroxidation, MDA levels were determined to have increased in all tissues with the exception of muscle. On the other hand, CAT and SOD enzyme activities in the fish tissues were decreased as compared to the control group. In the muscle tissue, differences were observed in the enzyme activities depending on arsenic concentration. Considering the increases in enzyme inhibition and MDA levels, liver was observed to be the main tissue affected in response to the arsenic toxicity.
显示更多 [+] 显示较少 [-]Environmental risk of combined emerging pollutants in terrestrial environments: chlorophyll a fluorescence analysis 全文
2015
González-Naranjo, Víctor | Boltes, Karina | de Bustamante, Irene | Palacios-Diaz, Pino
The risk assessment in terrestrial environments has been scarcely studied for mixtures of organic contaminants. To estimate toxicity due to these compounds, an ecotoxicological test may be done with the appropriate organism and biomarker. Photosynthesis is principally performed at photosystem II, and its efficiency is affected by any environmental stress. Consequently, the measure of this efficiency may be a good indicator of toxicity if different parameters are employed, e.g., the quantum efficiency of photosystem II and the photochemical quenching coefficient. We did a series of assays to determine the toxicity of two organic contaminants, ibuprofen and perfluorooctanoic acid, using a higher plant (Sorghum bicolor). The results showed more toxicity for the perfluorinated compound and greater sensibility for the quantum efficiency of photosystem II. Regarding the binary combination, three methods were applied to calculate EC₅₀: combination index, concentration addition, and independent action. Synergistic behavior is the principal toxicological profile for this mix. Therefore, the combination index, which considers interactions among chemicals, gave the best estimation to determine risk indices. We conclude that the inhibition of photosynthesis efficiency can be a useful tool to determine the toxicity of the mixtures of organic pollutants and to estimate ecological risks in terrestrial environments.
显示更多 [+] 显示较少 [-]Arsenic removal by nanoparticles: a review 全文
2015
Habuda-Stanić, Mirna | Nujić, Marija
Contamination of natural waters with arsenic, which is both toxic and carcinogenic, is widespread. Among various technologies that have been employed for arsenic removal from water, such as coagulation, filtration, membrane separation, ion exchange, etc., adsorption offers many advantages including simple and stable operation, easy handling of waste, absence of added reagents, compact facilities, and generally lower operation cost, but the need for technological innovation for water purification is gaining attention worldwide. Nanotechnology is considered to play a crucial role in providing clean and affordable water to meet human demands. This review presents an overview of nanoparticles and nanobased adsorbents and its efficiencies in arsenic removal from water. The paper highlights the application of nanomaterials and their properties, mechanisms, and advantages over conventional adsorbents for arsenic removal from contaminated water.
显示更多 [+] 显示较少 [-]Leaching of lead from new unplasticized polyvinyl chloride (uPVC) pipes into drinking water 全文
2015
Zhang, Yuanyuan | Lin, Yi-Pin
Unplasticized polyvinyl chloride (uPVC) pipes have been used in the premise plumbing system due to their high strength, long-term durability, and low cost. uPVC pipes, however, may contain lead due to the use of lead compounds as the stabilizer during the manufacturing process. The release of lead from three locally purchased uPVC pipes was investigated in this study. The effects of various water quality parameters including pH value, temperature, and type of disinfectant on the rate of lead release were examined. The elemental mapping obtained using scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) confirmed the presence of lead on the inner surfaces of the uPVC pipes and their surface lead weight percentages were determined. The leachable lead concentration for each pipe was determined using high strength acidic EDTA solutions (pH 4, EDTA = 100 mg/L). Lead leaching experiments using tap water and reconstituted tape water under static conditions showed that the rate of lead release increased with the decreasing pH value and increasing temperature. In the presence of monochloramine, lead release was faster than that in the presence of free chlorine.
显示更多 [+] 显示较少 [-]Photocatalytic abatement results from a model street canyon 全文
2015
Gallus, M. | Ciuraru, R. | Mothes, F. | Akylas, V. | Barmpas, F. | Beeldens, A. | Bernard, F. | Boonen, E. | Boréave, A. | Cazaunau, M. | Charbonnel, N. | Chen, H. | Daële, V. | Dupart, Y. | Gaimoz, C. | Grosselin, B. | Herrmann, H. | Ifang, S. | Kurtenbach, R. | Maille, M. | Marjanovic, I. | Michoud, V. | Mellouki, A. | Miet, K. | Moussiopoulos, N. | Poulain, L. | Zapf, P. | George, C. | Doussin, J. F. | Kleffmann, J.
During the European Life+ project PhotoPAQ (Demonstration of Photocatalytic remediation Processes on Air Quality), photocatalytic remediation of nitrogen oxides (NOₓ), ozone (O₃), volatile organic compounds (VOCs), and airborne particles on photocatalytic cementitious coating materials was studied in an artificial street canyon setup by comparing with a colocated nonactive reference canyon of the same dimension (5 × 5 × 53 m). Although the photocatalytic material showed reasonably high activity in laboratory studies, no significant reduction of NOₓ, O₃, and VOCs and no impact on particle mass, size distribution, and chemical composition were observed in the field campaign. When comparing nighttime and daytime correlation plots of the two canyons, an average upper limit NOₓ remediation of ≤2 % was derived. This result is consistent only with three recent field studies on photocatalytic NOₓ remediation in the urban atmosphere, whereas much higher reductions were obtained in most other field investigations. Reasons for the controversial results are discussed, and a more consistent picture of the quantitative remediation is obtained after extrapolation of the results from the various field campaigns to realistic main urban street canyon conditions.
显示更多 [+] 显示较少 [-]Morphology, ultrastructure and mineral uptake is affected by copper toxicity in young plants of Inga subnuda subs. luschnathiana (Benth.) T.D. Penn 全文
2015
de Freitas, Tielle Abreu | França, Marcel Giovanni Costa | de Almeida, Alex-Alan Furtado | de Oliveira, Sérgio José Ribeiro | de Jesus, Raildo Mota | Souza, Vânia Lima | dos Santos Silva, José Victor | Mangabeira, Pedro Antônio
Toxic effects of copper (Cu) were analyzed in young plants of Inga subnuda subs. luschnathiana, a species that is highly tolerant to flooding and found in Brazil in wetlands contaminated with Cu. Plants were cultivated in fully nutritive solution, containing different concentrations of Cu (from 0.08 μmol to 0.47 mmol L⁻¹). Symptoms of Cu toxicity were observed in both leaves and roots of plants cultivated from 0.16 mmol Cu L⁻¹. In the leaves, Cu clearly induced alterations in the thickness of the epidermis, mesophyll, palisade parenchyma, and intercellular space of the lacunose parenchyma. Also, this metal induced disorganization in thylakoid membranes, internal and external membrane rupture in chloroplasts, mitochondrial alterations, and electrodense material deposition in vacuoles of the parenchyma and cell walls. The starch grains disappeared; however, an increase of plastoglobule numbers was observed according to Cu toxicity. In the roots, destruction of the epidermis, reduction of the intercellular space, and modifications in the format of initial cells of the external cortex were evident. Cell walls and endoderm had been broken, invaginations of tonoplast and vacuole retractions were found, and, again, electrodense material was observed in these sites. Mineral nutrient analysis revealed higher Cu accumulation in the roots and greater macro- and micronutrients accumulation into shoots. Thus, root morphological and ultrastructural changes induced differential nutrients uptake and their translocations from root toward shoots, and this was related to membrane and endoderm ruptures caused by Cu toxicity.
显示更多 [+] 显示较少 [-]Physiological and genetic effects of chromium (+VI) on toxitolerant lichen species, Pyxine cocoes 全文
2015
Bajpai, Rajesh | Shukla, Vertika | Singh, Niraj | Rana, T. S. | Upreti, D. K.
Chromium is a highly toxic non-essential metal, which causes a variety of metabolic activities in plants. Pyxine cocoes a well known toxitolerant lichen species was considered to evaluate the possible physiological, biochemical, and genetic changes that occur due to chromium Cr (+VI) stress. The physiological (chlorophyll a, chlorophyll b, total chlorophyll, carotenoid, protein, and Fv/Fm) and genetic (ISSR-PCR and ITS) parameters were used to estimate the changes in P. cocoes. Different concentrations of Cr (+VI) (0, 10, 25, 50, 75, and 100 μM) for 10, 20, 30, and 45 days were employed on transplanted lichen species. The results revealed that the exposure of Cr (+VI) for 10, 20, 30, and 45 days under controlled conditions caused a significant decline in physiological processes with increasing metal stress. Amino acid profile at different concentrations on the 45th day too indicated prevailing stress condition as proline content significantly increased at 100 μM concentration. Inter-simple sequence repeat (ISSR) and internal transcribed spacer (ITS) techniques were used to evaluate the genotoxicity induced by chromium stress. ISSR profiles showed a consistent increase in appearance and disappearance of bands with increasing concentration of the chromium. ISSR technique, therefore, is more sensitive and reproducible to study polymorphism induced by environmental stress. The present study revealed that the physiological and genetic changes induced by the Cr (+VI) can be used as a tool to study environmental stress and polymorphisms due to genotoxicity. To the best of our knowledge, application of ISSR-PCR and ITS sequences in toxitolerant species (P. cocoes) appears to be the maiden attempt to evaluate the genotoxicity.
显示更多 [+] 显示较少 [-]