细化搜索
结果 1831-1840 的 2,492
Occurrence and suitability of pharmaceuticals and personal care products as molecular markers for raw wastewater contamination in surface water and groundwater
2014
Tran, Ngoc Han | Li, Jinhua | Hu, Jiangyong | Ong, Say Leong
This study aimed to provide the first and comprehensive data on the occurrence of 17 target pharmaceuticals and personal care products (PPCPs) in urban water environment in Singapore. Meanwhile, this study also verified the suitability of these PPCPs as specific markers of raw wastewater contamination in receiving water bodies in highly urbanized areas where both surface water and groundwater are not impacted by the discharge of treated wastewater effluents. Analytical results of wastewater showed that among 17 target PPCPs examined, only 5 PPCPs were detected in 100 % of raw wastewater samples, including acetaminophen (ACT), carbamazepine (CBZ), caffeine (CF), diethyltoluamide (DEET), and salicylic acid (SA). Similarly, these PPCPs were found in most surface water and groundwater. Interestingly, the three PPCPs (ACT, CBZ, and SA) were only detected in surface water and groundwater in the sampling sites close to relatively older sewer systems, while they were absent in background samples that were collected from the catchment with no known wastewater sources. This suggests that ACT, CBZ, and SA can be used as specific molecular markers of raw wastewater in surface water and groundwater. This study also confirmed that CF and DEET were not really associated with wastewater sources, thus cannot serve well as specific molecular markers of wastewater contamination in receiving water bodies. To the best knowledge of the authors, the use of ACT and SA as specific molecular markers of raw wastewater contamination in urban surface waters and groundwater was first reported. Further studies on the use of ACT, CBZ, and SA along with other chemical/microbial markers are recommended to identify and differentiate contamination sources of surface waters/groundwater.
显示更多 [+] 显示较少 [-]Potential of biological materials for removing heavy metals from wastewater
2014
Dhir, Bhupinder
Agricultural products/by-products are natural sorbent materials that possess capacity for removing contaminants including heavy metals from wastewaters and hence can be exploited as replacement of costly methods for wastewater treatment. The sorption of heavy metals onto these biomaterials is attributed to constituent's proteins, carbohydrates, and phenolic compounds that contain functional groups such as carboxylate, hydroxyl, and amine. Natural efficiency of these materials for removing heavy metals can be enhanced by treating them with chemicals. The present review emphasizes their use in developing eco-friendly technology for a large-scale treatment of wastewater.
显示更多 [+] 显示较少 [-]Remediation of acid mine drainage (AMD)-contaminated soil by Phragmites australis and rhizosphere bacteria
2014
Guo, Lin | Cutright, Teresa J.
Experiments were conducted to assess the impact of citric acid (CA) and rhizosphere bacteria on metal uptake in Phragmites australis cultured in a spiked acid mine drainage (AMD) soil. Rhizosphere iron-oxidizing bacteria (Fe(II)OB) enhanced the formation of Fe plaque on roots, which decreased the uptake of Fe and Mn. CA inhibited the growth of Fe(II)OB, decreased the formation of metal plaque, raised the metal mobility in soil, and increased the accumulation of metals in all tissues of the reeds. The higher the CA dosage, the more metals accumulated into reeds. The total amount of metals in reeds increased from 7.8 ± 0.5 × 10⁻⁶ mol plant⁻¹(Mn), 1.4 ± 0.1 × 10⁻³ mol plant⁻¹(Fe), and 1.0 ± 0.1 × 10⁻⁴ mol plant⁻¹(Al) in spiked soil without CA to 22.2 ± 0.5 × 10⁻⁶ mol plant⁻¹(Mn), 3.5 ± 0.06 × 10⁻³ mol plant⁻¹(Fe), and 5.0 ± 0.2 × 10⁻⁴ mol plant⁻¹(Al) in soil added with 33.616 g C₆H₈O₇·H₂O for per kilogram soil. CA could be effective at enhancing the phytoremediation of metals from AMD-contaminated soil.
显示更多 [+] 显示较少 [-]Characterization of SDS-degrading Delftia acidovorans and in situ monitoring of its temporal succession in SDS-contaminated surface waters
2014
Yilmaz, Fadime | Icgen, Bulent
Incomplete removal of sodium dodecyl sulfate (SDS) in wastewater treatment plants may result in SDS residues escaping and finding their way into receiving water bodies like rivers, lakes, and sea. Introduction of effective microorganisms into the aerobic treatment facilities can reduce unpleasant by-products and SDS residues. Selecting effective microorganisms for SDS treatment is a big challenge. Current study reports the isolation, identification, and in situ monitoring of an effective SDS-degrading isolate from detergent-polluted river waters. Screening was carried out by the conventional enrichment culture technique and the isolate was tentatively identified by using fatty acid methyl ester and 16S ribosomal RNA (rRNA) sequence analyses. Fatty acids produced by the isolate investigated were assumed as typical for the genus Comamonas. 16S rRNA sequence analysis also confirmed that the isolate had 95 % homology with Delftia acidovorans known as Comamonas or Pseudomonas acidovorans previously. D. acidovorans exhibited optimum growth at SDS concentration of 1 g l⁻¹but tolerated up to 10 g l⁻¹SDS. 87 % of 1.0 g l⁻¹pure SDS was degraded after 11 days of incubation. The temporal succession of D. acidovorans in detergent-polluted river water was also monitored in situ by using Comamonas-specific fluorescein-labeled Cte probe. Being able to degrade SDS and populate in SDS-polluted surface waters, D. acidovorans isolates seem to be very helpful in elimination of SDS.
显示更多 [+] 显示较少 [-]Biodegradability and transformation of human pharmaceutical active ingredients in environmentally relevant test systems
2014
Berkner, Silvia | Thierbach, Claudia
Human pharmaceutical active ingredients that are orally or parenterally administered may be metabolised in the body and after excretion may be further transformed in the receiving environmental compartments. The optimal outcome from an environmental point of view—complete mineralisation—is rarely observed. Small molecule pharmaceuticals are commonly not readily biodegradable according to Organisation for Economic Cooperation and Development (OECD) 301 tests. However, primary transformation is often observed. To gain information on the transformation of active ingredients in the environment, long-term studies like transformation in aquatic water/sediment systems according to OECD guideline 308 are required for the environmental risk assessment for human active pharmaceutical ingredients. Studies received until mid 2010 as part of the dossiers for marketing authorisation applications were evaluated concerning transformation products. The evaluation revealed that in 70 % of the studies, at least one transformation product (TP) is formed above 10 % of the originally applied dose, but in only 26 % of the studies are all TP identified. The evaluation also revealed that some TP of pharmaceutical active ingredients show a considerably longer DT₅₀compared to the parent compound. An example is the TP (val)sartan acid that is formed from an antihypertensive compound.
显示更多 [+] 显示较少 [-]Aquatic predicted no-effect concentration for three polycyclic aromatic hydrocarbons and probabilistic ecological risk assessment in Liaodong Bay of the Bohai Sea, China
2014
Wang, Ying | Wang, Juying | Mu, Jingli | Wang, Zhen | Yao, Ziwei | Lin, Zhongsheng
Predicted no-effect concentration (PNEC) is often used in ecological risk assessment to determine low-risk concentrations for chemicals. In the present study, native marine species were selected for toxicity testing. The PNECs for three polycyclic aromatic hydrocarbons (PAHs), specifically phenanthrene (Phe), pyrene (Pyr), and benzo[a]pyrene (BaP), were derived from chronic and acute toxicity data with log-normal statistical methods. The achieved PNECs for Phe, Pyr, and BaP were 2.33, 1.09, and 0.011 μg/L, respectively. In Jinzhou Bay and the Shuangtaizi River Estuary of Liaodong Bay in the Bohai Sea, China, the surface water concentrations of the three PAHs were analyzed by gas chromatography–mass spectrometry. Based on two probabilistic ecological risk assessment (PERA) methods, namely probabilistic risk quotient and joint probability curve, the potential risk of Phe, Pyr, and BaP in Jinzhou Bay and Shuangtaizi River Estuary was assessed. The same order of ecological risk (BaP > Phe > Pyr) was found by both models. Our study considered regional characteristics of marine biota during the calculation of PNECs, and the PERA methods provided probabilities of potential ecological risks of chemicals. Within the study area, further research on BaP is required due to its high potential ecological risk.
显示更多 [+] 显示较少 [-]Bathymetric variation of epiphytic assemblages on Posidonia oceanica (L.) Delile leaves in relation to anthropogenic disturbance in the southeastern Mediterranean
2014
Brahim, Mounir Ben | Mabrouk, Lotfi | Hamza, Asma | Mahfoudi, Mabrouka | Bouain, Abderrahmane | Aleya, Lotfi
A survey of the epiphytic leaves of Posidonia oceanica was conducted along a depth transect at both the control station Attaya in the Kerkennah Islands and the disturbed Mahres station on the Sfax coast (Tunisia). Samples were collected by scuba divers at depths of 5, 10, 15, and 20 m in July 2008. We evaluated whether the pattern of spatial variability of the macroepiphyte assemblages of leaves of Posidonia oceanica differed in relation to anthropogenic interference. The results indicate that the decrease in shoot density and leaf length according to depth was low at Mahres. The biomass of epiphytic leaves and the percentage cover of epiphytic assemblages decreased with depth for both stations and heavily at Mahres, this decline being related to anthropogenic disturbance. This study shows that the highest values of epifauna and epiflora were detected at the disturbed station Mahres. Macroalgae assemblages decreased with depth at both stations and were dominated by Rhodophyta, whereas the percentage cover of the epifauna leaf that decreases according to depth was dominated by Hydrozoa and Bryozoa. Changes in epiphyte assemblages, epiphytic biomass, percentage cover, and species richness in proportion to Heterokontophyta, Rhodophyta, Cyanobacteria, Hydrozoa, Porifera, and Tunicata between the two stations constitute promising tools for detecting environmental disturbance.
显示更多 [+] 显示较少 [-]A comparative study of abiological granular sludge (ABGS) formation in different processes for zinc removal from wastewater
2014
Chai, Liyuan | Yan, Xu | Li, Qingzhu | Yang, Bentao | Wang, Qingwei
Abiological granular sludge (ABGS) formation is a potential and facile strategy for improving sludge settling performance during zinc removal from wastewater using chemical precipitation. In this study, the effect of pH, seed dosage, and flocculant dosage on ABGS formation and treated water quality was investigated. Results show that settling velocity of ABGS can reach up to 4.00 cm/s under optimal conditions, e.g., pH of 9.0, zinc oxide (ZnO) seeds dosage of 1.5 g/l, and polyacrylamide (PAM) dosage of 10 mg/l. More importantly, ABGS formation mechanism was investigated in NaOH precipitation process and compared with that in bio-polymer ferric sulfate (BPFS)–NaOH precipitation process regarding their sludge structure and composition. In the NaOH precipitation process, ABGS formation depends on some attractions between particles, such as van der Waals attraction and bridging attraction. However, during the BPFS–NaOH sludge formation process, steric repulsion becomes dominant due to the adsorption of BPFS on ZnO seeds. This repulsion further causes extremely loose structure and poor settling performance of BPFS–NaOH sludge.
显示更多 [+] 显示较少 [-]Effect of crude oil contamination on the chlorophyll content and morpho-anatomy of Cyperus brevifolius (Rottb.) Hassk
2014
Baruah, Plabita | Saikia, Rashmi Rekha | Baruah, P. P. (Partha Pratim) | Deka, Suresh
Chlorophyll plays a pivotal role in the plant physiology and its productivity. Cultivation of plants in crude oil contaminated soil has a great impact on the synthesis of chlorophyll pigment. Morpho-anatomy of the experimental plant also shows structural deformation in higher concentrations. Keeping this in mind, a laboratory investigation has been carried out to study the effect of crude oil on chlorophyll content and morpho-anatomy of Cyperus brevifolius plant. Fifteen-day-old seedling of the plant was planted in different concentrations of the crude oil mixed soil (i.e., 10,000, 20,000, 30,000, 40,000, and 50,000 ppm). A control setup was also maintained without adding crude oil. Results were recorded after 6 months of plantation. Investigation revealed that there is a great impact of crude oil contamination on chlorophyll content of the leaves of the experimental plant. It also showed that chlorophyll a, chlorophyll b, and total chlorophyll content of leaves grown in different concentrations of crude oil were found to be lower than those of the control plant. Further, results also demonstrated that chlorophyll content was lowest in the treatment that received maximum dose of crude oil. It also showed that chlorophyll content was decreased with increased concentration of crude oil. Results also demonstrated that there was a reduction in plant shoot and root biomass with the increase of crude oil concentration. Results also revealed that the shoot biomass is higher than root biomass. Morphology and anatomy of the experimental plant also show structural deformation in higher concentrations. Accumulation of crude oil on the cuticle of the transverse section of the leaves and shoot forms a thick dark layer. Estimation of the level of pollution in an environment due to oil spill is possible by the in-depth study of the harmful effects of oil on the morphology and anatomy and chlorophyll content of the plants grown in that particular environment.
显示更多 [+] 显示较少 [-]Selected chloro and bromo derivatives of triclosan—syntheses and their occurrence in Canadian sewage and biosolid samples
2014
Lee, Hing-Biu | Kohli, Jagmohan | Peart, Thomas E. | Nguyễn, Niên
The occurrence of triclosan (TCS), a general purpose antibacterial agent contained in numerous consumer and personal-care products, in the aquatic environment is well known. To a lesser degree, the formation of chlorinated and brominated derivatives of TCS during the chlorination of the antibacterial has also been reported. Presumably due to the lack of authentic standards, very few reports have been published on the levels of these halogenated TCSs in the environment. For this purpose, we have synthesized six selected halogenated derivatives of TCS, namely, 3-Cl-, 5-Cl-, 3,5-Cl₂-, 3-Br-, 5-Br-, and 3,5-Br₂- TCSs, with supporting¹H-NMR (nuclear magnetic resonance) and GC–MS (gas chromatography–mass spectrometry) data for their structural assignments. Using these model compounds together with sensitive analytical methods, we were able to identify and quantify the above compounds together with their precursor compound TCS in Canadian municipal wastewater and biosolid samples for the first time. While detected in all influent (range from 1.4 to 24.1 ng L⁻¹) and biosolid (range from 7.7 to 274 ng g⁻¹) samples, the concentrations of these chlorinated TCS were generally from 100- to 1,000-fold lower than TCS in the same sample. Even lower levels (<20 ng/g in 85 % of the results) of brominated TCS were found in biosolids, and they were mostly undetected in sewage.
显示更多 [+] 显示较少 [-]