细化搜索
结果 1841-1850 的 6,536
Chlorinated organic contaminants in fish from the South China Sea: Assessing risk to Indo-Pacific humpback dolphin
2020
Yu, Xiaoxuan | He, Qingya | Sanganyado, Edmond | Liang, Yan | Bi, Ran | Li, Ping | Liu, Wenhua
Indo-Pacific humpback (Sousa chinensis) dolphins are primarily exposed to chlorinated organic contaminants through the consumption of contaminated fish. We assessed the potential risk of chlorinated organic contaminants to Indo-Pacific humpback dolphins by determining the concentration of 21 organochlorine pesticides (OCPs) and 28 polychlorinated biphenyls (PCBs) in 14 fish species collected from the South China Sea coastal waters. The results of the study showed that bioaccumulation of OCPs and PCBs was influenced by sampling location, fish species, and fish niche. The average ∑DDT (Dichlorodiphenyltrichloroethane) concentration was 3 times higher in benthopelagic fish (488 ng/g) compared to pelagic-neritic fish (155 ng/g) from Jiangmen, whereas an opposite pattern of the lower DDTs concentration in benthopelagic and demersal fish compared to pelagic fish from Zhuhai (p < 0.05). Furthermore, the molecular diagnostic ratios using DDT and its metabolites (DDT/(DDD + DDE) were less than one, suggesting the DDT contamination at Zhuhai and Jiangmen may due to the historical agricultural usage of the lands. The reference dose-based (RfD) risk quotient (RQ) suggested that DDTs are potential risk in Qinzhou, which is in accordance with the high DDTs concentration found in fishes captured in Qinzhou. The RfD risk quotient of PCBs is at potential risk for all sites (RQ > 100), except Xiamen and Qinzhou. A highest average ∑DDT concentration was observed Qinzhou. This study showed that fish consumption might pose a health risk to Indo-Pacific humpback dolphins. However, further studies are required to determine the contribution of fish niche to the overall risk.
显示更多 [+] 显示较少 [-]Co-occurrence of multidrug resistance, β-lactamase and plasmid mediated AmpC genes in bacteria isolated from river Ganga, northern India
2020
Chaturvedi, Preeti | Chaurasia, Deepshi | Pandey, Ashok | Gupta, Pratima
Wastewater effluents released in surface water provides suitable nutrient rich environment for the growth and proliferation of antibiotic resistant bacteria (ARB) and genes (ARG). Consequently, bacterial resistance has highly evolved over the recent years and diversified that each antibiotic class is inhibited by a distinct mechanism. In the present study, the prevalence of Multidrug resistant (MDR), extended spectrum β-lactamases (ESBL) and plasmid mediated Amp-C producing strains was analyzed in 28 surface water samples collected near domestic effluent discharge sites in river Ganga located across 11 different geographical indices of Uttar Pradesh, India. A total of 243 bacterial strains with different phenotypes were isolated. Among 243 isolates, 206 (84.77%) exhibited MDR trait displaying maximum resistance towards β-lactams (P = 78.19%; AMX = 72.84%), glycopeptides (VAN = 32.92%; TEI = 79.42%), cephalosporins (CF = 67.90%; CFX = 38.27%), and lincosamides (CD = 78.18%) followed by sulfonamide, macrolide and tetracycline. ESBL production was confirmed in 126 (51.85%) isolates that harbored the genes: blaTEM (95.24%), blaSHV (22.22%), blaOXA (11.90%) and blaCTX-M group (14.28%). The presence of plasmid mediated AmpC was detected only in 6.17% of isolates. The existence of such pathogenic strains in the open environment generates an urgent need for incorporating stringent measures to reduce the antibiotic consumption and hence its release.
显示更多 [+] 显示较少 [-]Legacy and emerging organophosphorus flame retardants and plasticizers in frogs: Sex difference and parental transfer
2020
Liu, Yin-E | Luo, Xiao-Jun | Guan, Ke-Lan | Huang, Chen-Chen | Zhu, Chun-You | Qi, Xue-Meng | Zeng, Yan-Hong | Mai, Bi-Xian
Black-spotted frogs and bullfrogs from an e-waste polluted area were collected and examined for legacy and emerging organophosphorus flame retardants (PFRs) and plasticizers. Total concentrations of PFRs and plasticizers were 0.62–15 ng/g wet weight (ww) and 316–4904 ng/g ww in muscles, 2.2–59 ng/g ww and 127–5757 ng/g ww in eggs and gonads, and 1.2–15 ng/g ww and 51–1510 ng/g ww in oviducts, respectively. For muscle tissues, concentrations of ∑PFRs, triethyl phosphate, tris-(2-chloroethyl) phosphate, and tris-(chloro-2-propyl) phosphate were significantly higher in the males than females (p < 0.05). However, for reproductive tissues, eggs exhibited higher levels of those contaminants than gonads (p < 0.05). No significant sex difference in levels of plasticizers was observed in muscles. In contrast, levels for (2-ethylhexyl) phthalate, di-n-butyl phthalate, and di-iso-butyl phthalate in gonads were significantly higher than those in eggs (p < 0.05). Significantly negative linear correlations between maternal transfer ratios and log KOW were found in female frogs. Paternal transfer potentials were first significantly and positively correlated to log KOW (<6) and then decreased afterward in the males. These results indicated that parental transfer was answer for the sex-specific accumulation of PFRs and plasticizers in frogs.
显示更多 [+] 显示较少 [-]Particulate air pollution in Ho Chi Minh city and risk of hospital admission for acute lower respiratory infection (ALRI) among young children
2020
Luong, Ly Thi Mai | Dang, Tran Ngoc | Thanh Huong, Nguyen Thi | Phùng, Dũng | Tran, Long K. | Van Dung, Do | Thai, Phong K.
High levels of air pollutants in Vietnam, especially particulate matters including PM₂.₅, can be important risk factors for respiratory diseases among children of the country. However, few studies on the effects of ambient air pollution on human health have been conducted in Vietnam so far. The aim of this study is to examine the association between PM₂.₅ and hospital admission due to acute lower respiratory infection (ALRI) among children aged < 5 years old in Ho Chi Minh city, the largest city of Vietnam. Data relating PM₂.₅ and hospital admission were collected from February 2016–December 2017 and a time series regression analysis was performed to examine the relationship between PM₂.₅ and hospital admission including the delayed effect up to three days prior to the admission. We found that each 10 μg/m³ increase in PM₂.₅ was associated with an increase of 3.51 (95%CI: 0.96–6.12) risk of ALRI admission among children. According to the analysis, male children are more sensitive to exposure to PM₂.₅ than females, while children exposed to PM₂.₅ are more likely to be infected with acute bronchiolitis than with pneumonia. The study demonstrated that young children in HCMC are at increased risk of ALRI admissions due to the high level of PM₂.₅ concentration in the city's ambient air.
显示更多 [+] 显示较少 [-]Low endogenous NO levels in roots and antioxidant systems are determinants for the resistance of Arabidopsis seedlings grown in Cd
2020
Terrón-Camero, Laura C. | del Val, Coral | Sandalio, Luisa M. | Romero-Puertas, María C.
Cadmium (Cd), which is a toxic non-essential heavy metal capable of entering plants and thus the food chain, constitutes a major environmental and health concern worldwide. An understanding of the tools used by plants to overcome Cd stress could lead to the production of food crops with lower Cd uptake capacity and of plants with greater Cd uptake potential for phytoremediation purposes in order to restore soil efficiency in self-sustaining ecosystems. The signalling molecule nitric oxide (NO), whose function remains unclear, has recently been involved in responses to Cd stress. Using different mutants, such as nia1nia2, nox1, argh1-1 and Atnoa1, which were altered in NO metabolism, we analysed various parameters related to reactive oxygen and nitrogen species (ROS/RNS) metabolism and seedling fitness following germination and growth under Cd treatment conditions for seven days. Seedling roots were the most affected, with an increase in ROS and RNS observed in wild type (WT) seedling roots, leading to increased oxidative damage and fitness loss. Mutants that showed lower NO levels in seedling roots under Cd stress were more resistant than WT seedlings due to the maintenance of antioxidant systems which protect against oxidative damage.
显示更多 [+] 显示较少 [-]Variations in bacterioplankton communities in aquaculture ponds and the influencing factors during the peak period of culture
2020
Fan, Limin | Hu, Gengdong | Qiu, Liping | Meng, Shunlong | Wu, Wei | Zheng, Yao | Song, Chao | Li, Dandan | Chen, Jiazhang
An increase in nutrient input may disturb the bacterioplankton communities in freshwater aquaculture ponds during the peak period of culture. Water samples were collected from ponds of three cultivated species. After the samples were filtered and total DNA was extracted, Illumina high-throughput sequencing was used to profile the spatiotemporal distributions in bacterioplankton communities, the belt diversity, and the influencing factors during this period of time. The results showed that Proteobacteria, Cyanobacteria, Bacteroidetes, and Actinobacteria were the dominant phyla. Biological differences in cultivated species were the main influencing factors that shaped bacterioplankton communities. Monthly variations and thermal stratification provided little and no contribution to bacterioplankton communities, respectively. CODmn, Chla, and TN were the most appropriate parameters to describe the environmental interpretation of bacterial ordinations, and CODmn was the predominant factor. In addition, the higher similarity between CODmn and Chla, shown by clustering analysis, indicated that the algae-bacteria symbiotic system may have an important role in material circulation in freshwater aquaculture pond water during the peak period of culture. The present study has helped to elucidate the biological characteristics of aquaculture tail water, and enriched the basic data provided by bacterioplankton studies.
显示更多 [+] 显示较少 [-]Thallium exposure at low concentration leads to early damage on multiple organs in children: A case study followed-up for four years
2020
Duan, Weixia | Wang, Yongyi | Li, Zhiqiang | Fu, Guanyan | Mao, Longchun | Song, Yunbo | Qu, Yaping | Ye, Lvsu | Zhou, Qu | Yang, Fucheng | Hu, Zhide | Xu, Shangcheng
Thallium (TI) is one of the most toxic heavy metals and priority pollutant metals. The emerging TI environmental pollution worldwide has posed a great threat to human health. However, based on the World Health Organization (WHO), the risk and severity of adverse health effects of TI in the range of 5–500 μg/L are uncertain. Moreover, evidence regarding the adverse impacts of TI on children’s health is still insufficient. Herein, we aim to investigate the early adverse effects of TI on children’s health and provide references for the WHO to establish stricter safety limits of TI. From 2015 to 2019, urinary TI and many clinical laboratory parameters related to blood routine, hepatic, renal, myocardial, coagulation function and serum electrolyte were measured in six children aged 1–9 years. The urinary TI concentration ranged from 13.4 μg/L to 60.1 μg/L with a mean of 36.1 μg/L and a median of 34.8 μg/L in six children in 2015. Although only four children felt a little poor appetite, several laboratory abnormalities indicated early damage in liver, renal, and myocardial functions in all children in 2015. After treatment and following up for four years, although the children’s TI concentration decreased below 5 μg/L, their liver and renal functions did not completely recover, and their myocardial function worsened. Results indicated that impaired liver, renal, and myocardial functions were closely associated with elevated urinary TI concentration in children. Considering the increasing use of TI in high-technology industries and emerging TI environmental-contamination zones worldwide, establishing stricter safety limits of TI and paying more attention to the adverse health effects of TI on children are urgently required.We found that a relatively low concentration of thallium (13.4 μg/L to 60.1 μg/L) impaired liver, renal, and myocardial function in six children. After treatment and following up these children for four years, although their urinary TI concentration decreased below 5 μg/L, their liver and renal functions did not completely recover, and their myocardial function worsened.
显示更多 [+] 显示较少 [-]BTEX indoor air characteristic values in rural areas of Jordan: Heaters and health risk assessment consequences in winter season
2020
Alsbou, Eid M. | Omari, Khaled W.
Benzene, toluene, ethylbenzene, and xylene isomers (BTEX) are known to affect environmental air and health quality. In this study, the levels of BTEX compounds were determined in indoor air environments during the winter generated by several different heaters: diesel pot-bellied heater with chimney (DH); electric heater (EH); unfluted gas heater (GH); kerosene heater (KH); and wood pot-bellied heater with chimney (WH). The samples were collected using a diffusion passive adsorbent (activated charcoal) and then analyzed by gas chromatography-mass spectrometry (GC-MS). The results showed that the heaters differ in the quantity of BTEX released during operation. The KH was the most polluted heater based on BTEX measurement, followed by DH. The ∑BTEX for heaters were observed as follows: KH (290 μg m⁻³); DH (120 μg m⁻³); GH (84 μg m⁻³); WH (31 μg m⁻³); EH (16 μg m⁻³). Toluene was the predominant compound in all air samples. In KH and DH, the toluene to benzene ratios (T/B) were higher than 4 due to fuel evaporation, while GH had a T/B ratio of 3.9, indicating that the combustion of liquefied petroleum gas (LPG) was the main source. Moreover, a risk assessment was performed to evaluate where the cancer risks (CR) for benzene and ethylbenzene exceeded the critical values (10⁻⁶). KH was found to be the most harmful heater for residents, followed by DH and GH. For non-carcinogenic compounds, hazard quotients (HQ) were found to be less than one and thus unlikely to cause health problems.
显示更多 [+] 显示较少 [-]Cadmium accumulation in rice (Oryza sativa L.) alleviated by basal alkaline fertilizers followed by topdressing of manganese fertilizer
2020
Deng, Xiao | Chen, Yixuan | Yang, Yang | Lü, Lei | Yuan, Xiaoqing | Zeng, Hongyuan | Zeng, Qingru
Rice is a main source of dietary cadmium (Cd), thus, how to reduce the Cd concentration in brown rice has received extensive attention worldwide. In three acidic paddy soils slightly to moderately contaminated with Cd, a series of field experiments were conducted to evaluate the effects of different proportions of nitrogen-phosphorus-potassium (N-P-K) fertilizer (urea, calcium magnesium phosphate, and potassium carbonate, respectively) alone or coupled with a topdressing of manganese (Mn) fertilizer at the tillering stage on reducing Cd bioavailability in soil and uptake in rice. The rational application of N-P-K fertilizer not only provided the basic nutrients to promote the normal growth of rice but also increased soil pH and thereby reduced the Cd bioavailability in soil. The Mg(NO₃)₂-extracted Cd concentrations in the three soils were reduced by 26.46–56.53%, while TCLP-extracted Cd were reduced by 19.87–45.41%, with little influence on soil cation exchange capacity (CEC) and organic matter (OM). The application of Mn fertilizer at the tillering stage increased Mn and Cd sequestration in the iron plaque. The Mn content in iron plaque increased by 15.71–58.67% and a significant positive correlation between Cd and Mn was observed at the three sites. Collectively, this combined method of fertilization significantly reduced Cd accumulation in rice tissues, the Cd concentrations in roots of treated plants decreased by 11.18–37.78%, whereas the concentrations in straw decreased by 13.16–41.03%. Particularly to brown rice, in which accumulation decreased by 25.19–44.70%, 37.35–47.84%, and 38.00–60.88% in three typical paddy fields, but no significant effect was observed for the Cd translocation factors (TF) among rice tissues. Thus, the basal application of combined urea and alkaline inorganic fertilizers followed by topdressing of Mn fertilizer may be a promising and cost-effective tactics for the remediation of Cd-contaminated paddy soils.
显示更多 [+] 显示较少 [-]Melatonin ameliorates ochratoxin A-induced oxidative stress and apoptosis in porcine oocytes
2020
Lan, Mei | Zhang, Yu | Wan, Xiang | Pan, Meng-Hao | Xu, Yao | Sun, Shao-Chen
Melatonin is a hormone which is generated from pineal gland, and it is responsible for the regulation of wake-sleep cycle. Melatonin is a well-known antioxidant and free radical scavenger to protect against multiple type of tissue damage. While ochratoxin A (OTA) is a mycotoxin found widely in contaminated food and foodstuffs, which causes nephrotoxicity, hepatotoxicity, immunotoxicity, and reproductive damage in humans and animals. In present study we report the toxicity of OTA on porcine oocyte quality and the protective effects of melatonin on OTA-exposed oocytes. Using transcriptome analysis our results show that OTA exposure alters the expression of multiple genes in oocytes, indicating its effect on oocyte maturation. The cellular changes following OTA treatment are examined, and the results show that OTA adversely affects oocyte polar body extrusion, which is confirmed by the delay of Cdc2-mediated cell cycle progression. OTA exposure also disrupts meiotic spindle formation, which is confirmed by altered phosphorylated MAPK expression. RNA-seq screening and further fluorescence staining results show that OTA induces aberrant mitochondria distribution and oxidative phosphorylation defects, which then causes oxidative stress, followed by early apoptosis and autophagy. Treatment with melatonin significantly ameliorates oxidative stress and apoptosis, which further protects cell cycle and spindle formation in OTA-exposed oocytes. Collectively, these results show the protective effects of melatonin against defects induced by OTA during porcine meiotic oocyte maturation.
显示更多 [+] 显示较少 [-]