细化搜索
结果 1861-1870 的 6,548
Mercury accumulation in soil from atmospheric deposition in temperate steppe of Inner Mongolia, China 全文
2020
Cheng, Zhenglin | Tang, Yi | Li, Engui | Wu, Qingru | Wang, Long | Liu, Kaiyun | Wang, Shuxiao | Huang, Yongmei | Duan, Lei
Mercury (Hg) is a toxic and persistent pollutant and has long-term impacts on ecological systems and human health. Coal-fired power plants (CFPPs) are the main source of anthropogenic Hg emission, and the emitted atmospheric Hg is deposited to the surrounding environments which causes soil pollution. To assess the effects of atmospheric Hg from CFPPs in China on the temperate steppe, Hg contents in the topsoil and subsoil were analyzed for samples collected from 80 sites in central Inner Mongolia during 2012–2015. The average content of Hg in topsoil and subsoil were 14.9 ± 10.4 μg kg⁻¹ and 8.9 ± 5.8 μg kg⁻¹, respectively. The principal components analysis (PCA) indicated that the soil organic matter content and atmospheric deposition were the main factors determining soil Hg content in Inner Mongolia. We used the power plant impact factor (PPIF) to evaluate the impacts of the surrounding CFPPs. The PPIF results showed the most positive correlation with Hg content in topsoil at more than 400 km distances, indicating that the contribution of the long-range transport of Hg emitted from CFPPs is regional in scale. Considering the potential of Hg accumulation in soil, long-term and regional measurements of soil Hg and stricter emission-limit standards for power plants should be implemented to control soil Hg pollution in China.
显示更多 [+] 显示较少 [-]What is in our seas? Assessing anthropogenic litter on the seafloor of the central Mediterranean Sea 全文
2020
Garofalo, G. | Quattrocchi, F. | Bono, G. | Di Lorenzo, M. | Di Maio, F. | Falsone, F. | Gancitano, V. | Geraci, M.L. | Lauria, V. | Massi, D. | Scannella, D. | Titone, A. | Fiorentino, F.
Abundance, composition, and distribution of macro-litter found on the seafloor of the Strait of Sicily between 10 and 800 m depth has been studied using data collected by bottom trawl surveys MEDITS from 2015 to 2019. Three waste categories based on the items use were considered: single-use, fishing-related and generic-use. Over 600 sampling sites, just 14% of these were litter-free. The five-years average density of seafloor litter was 79.6 items/km² and ranged between 46.8 in 2019 and 118.1 items/km² in 2015. The predominant waste type was plastic (58% of all items). Regardless of material type, single-use items were a dominant (60% of items) and widespread (79% of hauls) fraction of litter with a mean density of 48.4 items/km². Fishing-related items accounted for 12% of total litter items. Percentage of dirty hauls and litter density increased with depth. Analysis of the relation density-depth indicates a progressive increase of litter density beyond depth values situated within the interval 234–477 m depending on the litter category. A significant decrease in litter density by categories was observed over the period. Patterns of spatial distribution at the higher depths (200–80 0m) resulted stable over the years. Density hotspots of fishing-related items were found where the fishing activity that uses fish aggregating devices (FADs) is practised and in the proximity of rocky banks. Single-use and generic-use objects densities were greater on the seafloor along main maritime routes than other areas. Comparisons between the percentage of hauls littered with anthropic waste from the mid-1990s against those in 2018–19 highlighted an increase of about 10.8% and 15.3% for single-use items and fishing-related items respectively, and a decrease of 18.6% for generic-use items. This study provides a snapshot of the current situation of littering in the central Mediterranean Sea and represents a solid baseline against which the effectiveness of current and future mitigation strategies of the litter impact on marine environment can be measured.
显示更多 [+] 显示较少 [-]Size-dependent biochar breaking under compaction: Implications on clogging and pathogen removal in biofilters 全文
2020
Lê, Hường | Valenca, Renan | Ravi, Sujith | Stenstrom, Michael K. | Mohanty, Sanjay K.
Breaking of biochar during compaction of amended soil in roadside biofilters or landfill cover can affect infiltration and pollutant removal capacity. It is unknown how the initial biochar size affects the biochar breaking, clogging potential, and contaminant removal capacity of the biochar-amended soil. We compacted a mixture of coarse sand and biochar with sizes smaller than, similar to, or larger than the sand in columns and applied stormwater contaminated with E. coli. Packing columns with biochar pre-coated with a dye and analyzing the dye concentration in the broken biochar particles eluted from the columns, we proved that biochar predominantly breaks under compaction by disintegration or splitting, not by abrasion. Increases in biochar size decrease the likelihood of biochar breaking. We attribute this result to the effective dissipation of compaction energy through a greater number of contact points between a large biochar particle and the adjacent particles. Most of the broken biochar particles are deposited in the pore spaces of the background geomedia, resulting in an exponential decrease in hydraulic conductivity of amended sand with an increase in suspended sediment loading. The clogging rate was higher in the columns with small biochar. The columns with small biochar also exhibited high E. coli removal capacity, partly because of an increase in bacterial straining at reduced pore size after compaction. These results are useful in selecting appropriate biochar size for its application in soils and roadside biofilters for stormwater treatment.
显示更多 [+] 显示较少 [-]Combined toxic effects of fludioxonil and triadimefon on embryonic development of zebrafish (Danio rerio) 全文
2020
Wang, Yanhua | Xu, Chao | Wang, Dou | Weng, Hongbiao | Yang, Guiling | Guo, Dongmei | Yu, Ruixian | Wang, Xinquan | Wang, Qiang
Pesticides scarcely exist as individual compounds in the water ecosystem, but rather as mixtures of multiple chemicals at relatively low concentrations. In this study, we aimed to explore the mixture toxic effects of fludioxonil (FLU) and triadimefon (TRI) on zebrafish (Danio rerio) by employing different toxicological endpoints. Results revealed that the 96-h LC₅₀ values of FLU to D. rerio at multiple developmental stages ranged from 0.055 (0.039–0.086) to 0.61 (0.33–0.83) mg L⁻¹, which were less than those of TRI ranging from 3.08 (1.84–5.96) to 9.75 (5.99–14.78) mg L⁻¹. Mixtures of FLU and TRI exerted synergistic effects on embryonic zebrafish. Activities of total superoxide dismutase (T-SOD) and catalase (CAT) were markedly altered in most of the individual and pesticide mixture treatments compared with the control. The expressions of 16 genes involved in oxidative stress, cellular apoptosis, immune system and endocrine system displayed that embryonic zebrafish were affected by the individual pesticides and their mixtures, and greater variations of four genes (ERɑ, Tnf, IL and bax) were found when exposed to pesticide mixtures compared with their individual compounds. Therefore, more studies on mixture toxicities among different pesticides should be taken as a priority when evaluating their ecological risk.
显示更多 [+] 显示较少 [-]Effect of temperature on the sulfur fate during hydrothermal carbonization of sewage sludge 全文
2020
Wang, Zhexian | Zhai, Yunbo | Wang, Tengfei | Peng, Chuan | Li, Shanhong | Wang, Bei | Liu, Xiangmin | Li, Caiting
To understand the effect of reaction temperature on sulfur during hydrothermal carbonization (HTC) of sewage sludge (SS), seven group of temperature (180–300 °C) were chosen to investigate the distributions and evolution of sulfur-containing compounds in hydrochar and the liquid products. Elemental analysis, X-ray photoelectron spectroscopy (XPS), and X-Ray powder diffraction (XRD) were used to characterize the distribution of sulfur in hydrochar. The concentrations of sulfate ions and sulfide were determined in the liquid sample. The experimental results showed that as the temperature increased, the O/C ratio decreased because of the improved carbonization degree of SS. After hydrothermal carbonization, 90% of the sulfur in SS remained in hydrochar. As the temperature increased, the amount of sulfur in the liquid, mainly in the form of sulfate ions, tended to decrease. However, the experimental results for the gas phase were the opposite of the liquid phase.
显示更多 [+] 显示较少 [-]Antibiotics in soil and water in China–a systematic review and source analysis 全文
2020
Lyu, Jia | Yang, Linsheng | Zhang, Lan | Ye, Bixiong | Wang, Li
With the high production and consumption of antibiotics in recent years due to increasing economic development and improving population health, China is facing serious antibiotic pollution in the environment, and it is becoming a significant threat to ecology and human health. This study explores the spatial distribution patterns of 65 antibiotics in soil, surface water and coastal water based on a systematic review. Potential emission sources of antibiotics are also analyzed using data extracted from the reviewed literature. The results suggest that China has very high antibiotic detection rates of 100%, 98.0% and 96.4% for soil, surface water and coastal water, respectively. Regions with high antibiotic levels are mainly located in Bohai Bay, including the Beijing‒Tianjin‒Hebei region, Liaoning and Shandong Provinces, and Yangtze River. Tetracyclines (TCs) and quinolones (QNs) are the dominant antibiotics observed in soil and are mainly attributed to the use of manure as fertilizer and the reuse of domestic wastewater. Sulfonamides (SAs), macrolides (MLs), TCs and QNs are the dominant antibiotics observed in surface water and are mainly attributed to aquaculture and the emission of domestic sewage. QNs are the dominant antibiotics observed in coastal water and are mainly attributed to marine cultivation. The detection frequencies and concentrations of TCs, QNs, SAs and MLs in both soil and water are much higher than those in other developed countries. Suggestions including restricting antibiotic usages in livestock farming and aquaculture, innovation of wastewater treatment technology to improve antibiotic removal rate, and establishing guidelines on antibiotic concentration for wastewater discharge and organic fertilizer are provided.
显示更多 [+] 显示较少 [-]Uptake and dissipation of metalaxyl-M, fludioxonil, cyantraniliprole and thiamethoxam in greenhouse chrysanthemum 全文
2020
Gong, Wenwen | Jiang, Mengyun | Zhang, Tingting | Zhang, Wei | Liang, Gang | Li, Bingru | Hu, Bin | Han, Ping
Production of chrysanthemum (Dendranthema grandiflora) in greenhouses often requires intensive pesticide use, which raises serious concerns over food safety and human health. This study investigated uptake, translocation and residue dissipation of typical fungicides (metalaxyl-M and fludioxonil) and insecticides (cyantraniliprole and thiamethoxam) in greenhouse chrysanthemum when applied in soils. Chrysanthemum plants could absorb these pesticides from soils via roots to various degrees, and bioconcentration factors (BCFLS) were positively correlated with lipophilicity (log Kₒw) of pesticides. Highly lipophilic fludioxonil (log Kₒw = 4.12) had the greatest BCFLS (2.96 ± 0.41 g g⁻¹), whereas hydrophilic thiamethoxam (log Kₒw = −0.13) had the lowest (0.09 ± 0.03 g g⁻¹). Translocation factors (TF) from roots to shoots followed the order of TFₗₑₐf > TFₛₜₑₘ > TFfₗₒwₑᵣ. Metalaxyl-M and cyantraniliprole with medium lipophilicity (log Kₒw of 1.71 and 2.02, respectively) and hydrophilic thiamethoxam showed relatively strong translocation potentials with TF values in the range of 0.29–0.81, 0.36–2.74 and 0.30–1.03, respectively. Dissipation kinetics in chrysanthemum flowers followed the first-order with a half-life of 21.7, 5.5, 10.0 or 8.2 days for metalaxyl-M, fludioxonil, cyantraniliprole and thiamethoxam, respectively. Final residues of these four pesticides, including clothianidin (a primary toxic metabolite of thiamethoxam), in all chrysanthemum flower samples were below the maximum residue limit (MRL) values 21 days after two soil applications each at the recommended dose (i.e., 3.2, 2.1, 4.3 and 4.3 kg ha⁻¹, respectively). However, when doubling the recommended dose, the metabolite clothianidin remained at concentrations greater than the MRL, despite that thiamethoxam concentration was lower than the MRL value. This study provided valuable insights on the uptake and residues of metalaxyl-M, fludioxonil, cyantraniliprole and thiamethoxam (including its metabolite clothianidin) in greenhouse chrysanthemum production, and could help better assess food safety risks of chrysanthemum contamination by parent pesticides and their metabolites.
显示更多 [+] 显示较少 [-]Membrane Enhanced Bioaccessibility Extraction (MEBE) of hydrophobic soil pollutants – Using a semipermeable membrane for separating desorption medium and acceptor solvent 全文
2020
Cocovi-Solberg, David J. | Kellner, Astrid | Schmidt, Stine N. | Loibner, Andreas P. | Miró, Manuel | Mayer, Philipp
Bioaccessibility extractions are increasingly applied to measure the fraction of pollutants in soil, sediment and biochar, which can be released under environmentally or physiologically relevant conditions. However, the bioaccessibility of hydrophobic organic chemicals (HOCs) can be markedly underestimated when the sink capacity of the extraction medium is insufficient. Here, a novel method called “Membrane Enhanced Bioaccessibility Extraction” (MEBE) applies a semipermeable membrane to physically separate an aqueous desorption medium that sets the desorption conditions from an organic medium that serves as acceptor phase and infinite sink. The specific MEBE method combines HOC (1) desorption into a 2-hydroxypropyl-β-cyclodextrin solution, (2) transfer through a low-density polyethylene (LDPE) membrane and (3) release into ethanol, serving as analytical acceptor phase. The surface to volume ratio within the LDPE membrane is maximized for rapid depletion of desorbed molecules, and the capacity ratio between the acceptor phase and the environmental sample is maximized to achieve infinite sink conditions. Several experiments were conducted for developing, optimizing and pre-testing the method, which was then applied to four soils polluted with polycyclic aromatic hydrocarbons. MEBE minimized sample preparation and yielded a solvent extract readily analyzable by HPLC. This study focused on the proof-of-principle testing of the MEBE concept, which now can be extended and applied to other samples and desorption media.
显示更多 [+] 显示较少 [-]Triphenyl phosphate modulated saturation of phospholipids: Induction of endoplasmic reticulum stress and inflammation 全文
2020
Hu, Wenxin | Kang, Qiyue | Zhang, Chenhao | Ma, Haojia | Xu, Chenke | Wan, Yi | Hu, Jianying
Although triphenyl phosphate (TPHP) has been reported to disrupt lipid metabolism, the effect of TPHP on lipid saturation remains unexplored. In this study, a lipidomic analysis demonstrated decreases in the levels of poly-unsaturated phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS) in RAW264.7 murine macrophage cells exposed to 10 μM TPHP. The expression of the gene encoding lysophosphatidylcholine acyltransferase 3 (Lpcat3) was significantly downregulated by 0.76 ± 0.03 and 0.70 ± 0.08-fold in 10 and 20 μM TPHP exposure groups, relative to the control group. This finding explains the observed decrease in lipid saturation. Correspondingly, exposure to 10 and 20 μM TPHP induced endoplasmic reticulum (ER) stress and inflammatory responses, which have been linked to metabolic dysfunction such as insulin resistance and hypertriglyceridemia. Therefore, TPHP may pose a risk to human health by promoting metabolic diseases.
显示更多 [+] 显示较少 [-]Utilization of domestic wastewater as a water source of Tetradesmusobliquus PF3 for the biological removal of nitric oxide 全文
2020
Ma, Shanshan | Yu, Yanling | Cui, Hao | Li, Jiang | Feng, Yujie
The reduction of nitrogen oxide (DeNOx) from flue gas by microalgae is a promising technology that has attracted increasing attention. Because the water source is a major limitation of microalgae application in the DeNOx from flue gas, we investigated the feasibility of using domestic wastewater (WW) as a water source. As a result, a biomass accumulation rate of 0.27 ± 0.01 mg L⁻¹ d⁻¹ was achieved by Tetradesmusobliquus PF3 cultivated in WW for 8 d, and 30 mg L⁻¹ of nitrate nitrogen was added to the WW to fulfill the nutrient requirements of the microalgae cells. The ammonium (NH₄⁺) nitrogen present in WW exerted inhibitory effects on the removal of nitric oxide (NO), thereby leading to 8% decrease removal efficiency in comparison with that using clean water and nutrients (BG11 medium). However, these inhibitory effects disappeared following the exhaustion of NH₄⁺ by T. obliquus PF3 after 1 d. To overcome the inhibition of NH₄⁺ and to achieve a high NO removal efficiency, a strategy of connecting two reactors in series was presented. The removal efficiency of NO by the two series reactors reached up to 71.2 ± 2.9%, which was significantly higher than that obtained by a single reactor (43.1 ± 3.6%). In addition, 70.9 ± 4.8% of the supplied NO was fixed into microalgae cells in the two reactors, which was 1.75 times higher than that in the single reactor (40.6 ± 5.1%), thereby suggesting that connecting two reactors in series rendered effective recovery of NO from flue gas using WW as a water source. In this study, we provided an economically viable water source for the application of microalgae in the biological DeNOx from flue gases.
显示更多 [+] 显示较少 [-]