细化搜索
结果 1861-1870 的 6,558
Effects of carbide slag, lodestone and biochar on the immobilization, plant uptake and translocation of As and Cd in a contaminated paddy soil 全文
2020
Liu, Guofei | Meng, Jun | Huang, Yanlan | Dai, Zhongmin | Tang, Caixian | Xu, Jianming
The contamination of arsenic (As) and cadmium (Cd) in paddy soils is widely reported and these two metals are difficult to be co-remediated due to the contrasting chemical behaviors. This poses a challenge to simultaneously decrease their availability in soil and accumulation in rice via immobilization by amendments, especially in in-situ fields. This study compared the effects of carbide slag, lodestone and biochar on the bioavailability of As and Cd in soil and their accumulation in rice tissues and root Fe–Mn plaque at tillering and mature stages in a paddy field. The addition of three amendments significantly limited the mobilization of As and Cd in soil and decreased their accumulations in brown rice by 30–52% and 9–21%, respectively. Carbide slag was most whereas lodestone least effective in As and Cd immobilization in the tested contaminated soils. Community Bureau of Reference (BCR) sequential extraction analysis showed that the amendments changed the forms of As and Cd to less-available. Activated functional groups of the amendments (e.g. –OH, C–O, OC–O, OH⁻ and CO₃²⁻) sequestered metals by precipitation, adsorption, ion exchange or electrostatic attributes contributed greatly to the As and Cd immobilization in soil. Furthermore, the amendments promoted the formation of Fe–Mn plaque in rice roots, which further limited the mobility of As and Cd in soil and prevented their transport from soil to rice roots. The application of carbide slag and biochar but not lodestone increased rice yield compared to the unamended control, indicating their applicability in situ remediation. Our study gives a strong reference to select immobilizing amendments for food safe production in co-contaminated paddy soils.
显示更多 [+] 显示较少 [-]Polychlorinated biphenyl quinone promotes macrophage polarization to CD163+ cells through Nrf2 signaling pathway 全文
2020
Liu, Jing | Yang, Bingwei | Wang, Yuting | Wu, Yunjie | Fan, Bailing | Zhu, Sixi | Song, Erqun | Song, Yang
Polychlorinated biphenyls (PCBs) are notorious environmental pollutants. For their hydrophobic and lipophilic capability, they are wildly spread to environment to threat human health thus attracts more attention. In this study, we observed increasing numbers of CD163 positive (CD163⁺) macrophages in aortic valve of ApoE⁻/⁻ mice after 2,3,5-trichloro-6-phenyl-[1,4]-benzoquinone (PCB29-pQ) treatment, the metabolite of polychlorinated biphenyl. In addition, in vitro studies identified that PCB29-pQ exposure significantly provoked the shifting of RAW264.7 macrophages and bone marrow derived monocytes (BMDMs) to CD163⁺ macrophages. Upon PCB29-pQ administration, CD163 and CD206 levels were enhanced in RAW264.7 cells as well as in BMDMs. However, the concentration of iron and total cholesterol (TC) were reduced due to the boosting of ferroportin (Fpn) and ATP binding cassette transporter, subfamily A, member 1 (ABCA1) which are efflux transporters of iron and cholesterol individually. Further investigation on mechanism indicated that PCB29-pQ exposure induced reactive oxygen species (ROS), which may result in activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a protein responsible for macrophage polarization. After that, we blocked Nrf2 through Nrf2 shRNA and ROS scavenger NAC, which significantly reversed the shifting of macrophage to CD163⁺ sub-population. These results confirmed the importance of Nrf2 in inducing macrophage polarization. In short, our study uncovered that PCB29-pQ could promote macrophage/monocyte polarization to CD163⁺ macrophage which would be a potential incentive to accelerate atherosclerosis through Nrf2 signaling pathway.
显示更多 [+] 显示较少 [-]Groundwater pollution early warning based on QTR model for regional risk management: A case study in Luoyang city, China 全文
2020
Huan, Huan | Li, Xiang | Zhou, Jun | Liu, Weijiang | Li, Juan | Liu, Bing | Xi, Beidou | Jiang, Yonghai
Groundwater pollution early warning has been regarded as an effective tool for regional groundwater pollution prevention, especially in China. In this study, the systemic model was established to assess the groundwater pollution early warning by integrating the present situation of groundwater quality (Q), groundwater quality trend (T) and groundwater pollution risk (R). The model integrated spatial and temporal variation of groundwater quality, and combined the state and process of the groundwater pollution. Q, T and R were assessed by the methods of fuzzy comprehensive assessment, Spearman or nonparametric Mann-Kendall trend test, and overlay index, respectively. Taking the Luoyang City as an example, the groundwater pollution early warning mapping was generated, and verified by corresponding the groundwater quality classes and the early warning degrees. The results showed that the groundwater was dominated by the levels of no warning and light warning, which accounted for 77% of the study area. The serious and tremendous warning areas were affected by the worse trend and relatively bad/bad present situations of groundwater quality with the typical contaminants of total hardness, nitrate, Hg and COD. In summary, the present situation of groundwater quality was the most important factor of groundwater pollution early warning mapping in the study area. The worse trend of groundwater quality played equally a key role in the local regions, as well as the high pollution risk, which was mainly affected by the pollution source loading. Targeted measures for groundwater pollution prevention were proposed in the corresponding degrees of groundwater pollution early warning. The QTR model was proved to be effective for assessing the regional groundwater pollution early warning. The accuracy of the model could be improved if there is further data acquisition of groundwater quality in longer time series and in larger number, and further investigation of pollution sources.The QTR model is proposed and proved to be effective for assessing regional groundwater pollution early warning.
显示更多 [+] 显示较少 [-]A theorem on a product of lognormal variables and hybrid models for children’s exposure to soil contaminants 全文
2020
Li, Zijian
This study developed hybrid Bayesian models to investigate the modeling process for children’s exposure to soil contaminants, which involves the intrinsic uncertainty of the exposure model, people’s judgments regarding random variables, and limited data resources. A hybrid Bayesian p-box was constructed, which was facilitated by a multiple integral dimensionality reduction (MIDR) theorem. The results indicated that exposure frequency (EF) dominated the exposure dose. The hybrid Bayesian p-box for the Frequentist-Bayesian (F–B) model at the 95th percentile of the simulated average daily dose (ADD) values corresponded to a 4.40 order-of-magnitude difference between the upper and lower bounds of the p-box. This considerable uncertainty was magnified by the combination of the highest posterior density (HPD) regions for three groups of the distribution parameters. For the Interior-Bayesian (I–B) hybrid model, the uncertainty of the outcomes, namely, [1.75 × 10⁻⁸, 2.18 × 10⁻⁸] mg kg⁻¹d⁻¹, was limited by the HPD regions for only one parameter unless the hyperparameters for the variables’ distributions were further evaluated. It was concluded that the hybrid models could provide a novel understanding of the complexity of the exposure modeling process compared to the traditional modeling method.
显示更多 [+] 显示较少 [-]Occurrence of short- and medium-chain chlorinated paraffins in soils and sediments from Dongguan City, South China 全文
2020
Wu, Yang | Gao, Shutao | Ji, Bingjing | Liu, Zhiyang | Zeng, Xiangying | Yu, Zhiqiang
As a group of emerging organic pollutants, chlorinated paraffins (CPs) have attracted rising global attention due to their persistence and toxicity. In this study, we have investigated the concentration levels and profiles of short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs) in soils and sediments from Dongguan City, an industrial area in South China, and have also screened very short-chain chlorinated paraffins (vSCCPs) by means of ultra-high resolution liquid chromatograph coupled with an Orbitrap Fusion Tribrid mass spectrometer. The results indicated that total SCCP concentrations ranged from 6.75 to 993 ng/g (mean 172 ng/g) in soils and from 4.00 to 613 ng/g (mean 153 ng/g) in sediments, respectively. Higher MCCP levels were observed with a range of 23.9–2427 ng/g (mean 369 ng/g) in soils and 14.0–1581 ng/g (mean 493 ng/g) in sediments, respectively. The results indicated that MCCPs dominated over SCCPs in the studied region. The dominant homologues in soils and sediments were C₁₃Cl₆–₇ and C₁₄Cl₇–₈, C₁₃Cl₇, and C₁₄Cl₇–₈, respectively. Furthermore, six vSCCP homologues (C₈Cl₇–₈ and C₉Cl₅–₈) in soils and four vSCCPs (C₉Cl₅–₈) in sediments have been identified. Because of their higher detection frequencies, further studies should focus on the transformation mechanisms and toxicities of these vSCCPs in environmental media and biota.
显示更多 [+] 显示较少 [-]Impact of chronic exposure to trichlorfon on intestinal barrier, oxidative stress, inflammatory response and intestinal microbiome in common carp (Cyprinus carpio L.) 全文
2020
Chang, Xulu | Wang, Xianfeng | Feng, Junchang | Su, Xi | Liang, Junping | Li, Hui | Zhang, Jianxin
Trichlorfon is an organic phosphorus pesticide used to control different parasitic infections in aquaculture. The repeated, excessive use of trichlorfon can result in environmental pollution, thus affecting human health. This study aimed to determine the effects of different concentrations of trichlorfon (0, 0.1, 0.5 and 1.0 mg/L) on the intestinal barrier, oxidative stress, inflammatory response and intestinal microbiome of common carp. Trichlorfon exposure significantly reduced the height of intestinal villus and decreased the expression levels of tight junction genes, such as claudin-2, occludin and ZO-1, in common carp. Moreover, the activities of antioxidant enzymes, such as CAT, SOD and GSH-Px, exhibited a decreasing trend with increasing trichlorfon concentrations, while the contents of MDA and ROS elevated in the intestinal tissues of common carp. The mRNA and protein levels of pro-inflammatory cytokines TNF-α and IL-1β were significantly upregulated by trichlorfon exposure. The level of anti-inflammatory cytokine TGF-β was remarkably higher in 1.0 mg/L trichlorfon treatment group compared to control group. In addition, the results demonstrated that trichlorfon exposure could affect the microbiota community composition and decreased the community diversity in the gut of common carp. Notably, the proportions of some probiotic bacteria, namely, Lactobacillus, Bifidobacterium and Akkermansia, were observed to be reduced after trichlorfon exposure. In summary, the findings of this study indicate that exposure to different concentrations of trichlorfon can damage intestinal barrier, induce intestinal oxidative damage, trigger inflammatory reaction and alter gut microbiota structure in common carp.
显示更多 [+] 显示较少 [-]Perfluorooctane sulfonate exposure alters sexual behaviors and transcriptions of genes in hypothalamic–pituitary–gonadal–liver axis of male zebrafish (Danio rerio) 全文
2020
Bao, Mian | Zheng, Shukai | Liu, Caixia | Huang, Wenlong | Xiao, Jiefeng | Wu, Kusheng
Perfluorooctane sulfonate (PFOS) has been reported to be widely distributed in the environment and wildlife with persistence. PFOS has various biological toxicity, especially disturbing the endocrine system. However, few studies have systematically evaluated its effect on sexual behaviors alteration and reproduction-related genes. This study was performed to assess the effect of PFOS exposure on sexual behaviors and genes in hypothalamic–pituitary–gonadal–liver (HPGL) axis in adult zebrafish.Male adult zebrafish were exposed to PFOS (0, 2, 20, and 200 μg/L) and 5 μg/L estradiol (E₂) continuously for 21 days. Sexual behaviors were analyzed by zebrafish behavior tracking system and the mRNA levels of HPGL-related genes was detected by RT-qPCR.Body weight of the fish was increased in 2, 200 μg/L PFOS and E₂ groups, and body length was increased with exposure to 2 μg/L PFOS and E₂. The hepatic-somatic index was decreased significantly after 2 and 20 μg/L PFOS treatments. Highest PFOS (200 μg/L) and E₂ exposure impaired standard zebrafish sexual behaviors significantly such as chasing, nose-tail and tail-touching. In brains, the genes gonadotropin-releasing hormone (GnRH), gonadotropin-releasing hormone receptor (GnRHr) were down-regulated with exposure to PFOS with linear trend and E₂ exposure, and follicle-stimulating hormone and luteinizing hormone were also down-regulated with exposure to 20 and 200 μg/L PFOS. In livers, the genes vitellogenin 1 and 3 were upregulated with some concentrations of PFOS and E₂, but estrogenic receptor α, β2 were upregulated in any concentration of PFOS and E₂. In testes, the expressions of follicle-stimulating hormone receptor, luteinizing hormone receptor, and androgen receptor genes were all significantly down-regulated with any exposure concentration of PFOS and E₂.PFOS may alter the zebrafish reproductive system by disrupting endocrine activity and impairing sexual behaviors.
显示更多 [+] 显示较少 [-]Sulfur-modified biochar as a soil amendment to stabilize mercury pollution: An accelerated simulation of long-term aging effects 全文
2020
Zhao, Bin | O’Connor, David | Shen, Zhengtao | Tsang, Daniel C.W. | Rinklebe, Jörg | Hou, Deyi
The stability of mercury (Hg) contamination in soil environments can change over time. This has implications for agricultural sites under long-term management after in situ treatment involving soil amendments. In this study, rice husk biochar (RHB) and sulfur modified rice husk biochar (SRHB) were synthesized and applied (dosage = 5% dry wt.) to a Hg polluted agricultural soil collected from Guizhou province, Southern China (soil total Hg content = 28.3 mg/kg; C = 2%; and, S = 0.1%). The long-term stabilization effectiveness of the soil treatments was evaluated by a combined approach involving: (i) accelerated aging for 104 simulated years; (ii) soil extraction as a proxy for plant uptake; and, (iii) sequential extraction to identify Hg fractions. The SRHB amendment raised the soil’s total S content by approximately an order of magnitude (to 0.9%), which remained at a generally constant level throughout the simulation. The initial pH levels for the untreated and treated soils were alkaline and remained between 7.0 and 7.5 for the first 50 years of simulated aging, before decreasing as the simulation time increased further. The pH of the SRHB treated soils did not drop below that of untreated soils during the simulation. Soil extraction tests with 0.1 M HCl solution indicated that RHB and SRHB treatments could effectively immobilize the Hg in soil for at least 50 and 75 simulated years, respectively. At simulated year 50, the amount of Hg extracted from RHB and SRHB treated soils was <200 ng/L and <100 ng/L, respectively. Thus, showing SRHB to be a particularly promising remedial option. The soil Hg was mostly associated with the stable sequential extraction fractions (F3-5). By the end of the simulation, the F5 fraction for SRHB and RHB treated soils reduced by 44.6%, and 42.0%, respectively, whereas the F4 fraction increased by >400% in both cases. In summary, SRHB may provide long-lasting Hg stabilization at contaminated sites. Therefore, further research toward the development of this stabilization technology is warranted.
显示更多 [+] 显示较少 [-]Intergenerational effects of resuspended sediment and trace metal mixtures on life cycle traits of a pelagic copepod 全文
2020
Das, Shagnika | Ouddane, Baghdad | Hwang, Jiang-Shiou | Souissi, Sami
Multiple stressors like metal toxicity, organic compounds and sediment pollution from the Seine estuary are raising concern and novel toxicological approaches are needed to better assess and monitor the risk. In the present study, the copepod Eurytemora affinis from the Seine, was exposed to two different sources of contaminants, which were resuspended polluted sediments and a mixture of trace metals (dissolved phase). The exposure continued for four generations (F0, F1, F2, F3) where F0 is a generation for acclimation to the exposure condition and F3 is a generation for decontamination followed without any exposure, to detect possible maternal carryover effects of pollutants (F0 – F2) and the role of recovery (in F3). Higher accumulation of metals resulted in higher mortalities at both exposure conditions, with particularly F1 being the most sensitive generation showing highest bioaccumulation of metals, highest mortality, and smallest population size. Copper accumulation was highest of all metals in mixture from both the resuspended sediment and the combined trace metal treatment. A significantly lower naupliar production was seen in copepods exposed to resuspended sediment compared to trace metal exposed copepods. However, the decontamination phase (F3) indicated that E. affinis pre-exposed to resuspended sediment had a higher ability to recover the total population size, increase naupliar production, and depurate accumulated Cu. The population exposed to a trace metal mixture showed lower recovery and lower ability to discharge accumulated toxic metals indicating its greater effect on our experimental model when compared to resuspended sediment.
显示更多 [+] 显示较少 [-]Morphology-Controlled Synthesis of α–Fe2O3 Nanocrystals Impregnated on g-C3N4–SO3H with Ultrafast Charge Separation for Photoreduction of Cr (VI) Under Visible Light 全文
2020
Balu, Sridharan | Chen, Yi-Lun | Juang, R.-C. | Yang, Thomas C.-K. | Juan, Joon Ching
Surface functionalization and shape modifications are the key strategies being utilized to overcome the limitations of semiconductors in advanced oxidation processes (AOP). Herein, the uniform α-Fe₂O₃ nanocrystals (α-Fe₂O₃–NCs) were effectively synthesized via a simple solvothermal route. Meanwhile, the sulfonic acid functionalization (SAF) and the impregnation of α-Fe₂O₃–NCs on g-C₃N₄ (α-Fe₂O₃–NCs@CN-SAF) were achieved through complete solvent evaporation technique. The surface functionalization of the sulfonic acid group on g-C₃N₄ accelerates the faster migration of electrons to the surface owing to robust electronegativity. The incorporation of α-Fe₂O₃–NCs with CN-SAF significantly enhances the optoelectronic properties, ultrafast spatial charge separation, and rapid charge transportation. The α-Fe₂O₃-HPs@CN-SAF and α-Fe₂O₃-NPs@CN-SAF nanocomposites attained 97.41% and 93.64% of Cr (VI) photoreduction in 10 min, respectively. The photocatalytic efficiency of α-Fe₂O₃–NCs@CN-SAF nanocomposite is 2.4 and 2.1 times higher than that of pure g-C₃N₄ and α-Fe₂O₃, respectively. Besides, the XPS, PEC and recycling experiments confirm the excellent photo-induced charge separation via Z-scheme heterostructure and cyclic stability of α-Fe₂O₃–NCs@CN-SAF nanocomposites.
显示更多 [+] 显示较少 [-]