细化搜索
结果 21-30 的 6,536
Performance and emission characteristics of the diesel engine running on neem (Azadirachta indica) biodiesel with effect of exhaust gas recirculation at optimum injection strategies
2020
Singh, Y. | Singla, A. | Sharma, A. | Singh, N. K.
Environmental pollution and strict emission norms are promoting researchers to explore the methods for reducing pollution and provide optimum solution. By considering these situation as the baseline, study was conducted to analyse the effect of exhaust gas recirculation (EGR) on performance and emission of the DI diesel engine. The effects of Injection Timings (IT), split injection and Exhaust Gas Recirculation on performance, emission characteristics of diesel engine fuelled neem biodiesel blends are investigated. Initially experiments are conducted with diesel, NB5, NB10 with original injection timing of 23° bTDC with direct injection and are considered as base reading. The fuel injection is optimized (at 19° bTDC and 16% split injection) and the effect of EGR rate at this optimized condition is analysed. Significant reduction of about 65.3%, 67% and 57% in the amount of NOx was obtained at full load as compared to base readings. Smoke emissions reduced by 2.8-3.4% and CO emissions reduced by around 52% for diesel and biodiesel blends at full load.
显示更多 [+] 显示较少 [-]Algal Indices as a Biomonitoring Tool to Assess Eutrophication in the Urban Ponds: a Case Study
2020
Vishal, R. | Meeta, B.
Eutrophication of the urban water bodies is one the biggest challenge causing severe ecological and economic loss. Urban ponds are more prone to eutrophication due to their small size and polluted catchment areas. Biomonitoring using phytoplankton provides cost-effective estimation of the level of eutrophication. Ten urban ponds in different areas of the Mumbai city were chosen to investigate the phytoplankton community structure, and level of eutrophication. We assessed the 3 algal indices viz. Shannon-Wiener indices, Palmer and Nygard's (Myxophycean and diatom) indices. Linear relationship of these indices was tested against Carlson trophic state indices in order to assess the effectiveness of these indices to measure the degree of eutrophication in urban lakes. All ten lakes were found to be eutrophic, of which two were very low eutrophic (TSI – 53.74-53.95), four were low-mid eutrophic (TSI – 55.18 – 57.5), and four lakes were mid eutrophic (TSI 61.4 – 62.2). Shannon-Wiener indices (r= -0.73) and Myxophycean indices (r= 0.77) showed strong correlation with TSI whereas Diatom indices (r= -0.12) and Palmer’s Algal Pollution Indices (r= - 0.47) showed weak correlation with TSI. Thus study found that Shannon-Wiener indices and Myxophycean indices are reliable and cost effective means to assess the eutrophication of urban ponds in Mumbai.
显示更多 [+] 显示较少 [-]Phytoremediation of soil Contaminated by Heavy Metals within a Technical Landfill Center Vicinity: Algerian Case Study
2020
Boukaka, Kh. | Mayache, B.
The contamination of environment with heavy metals has become a serious problem which can affect the human health. Three heavy metals (Zn, Cd and Pb) were determined in soil and plants for below and aboveground parts along landfill Demina center, located in the wilaya of Jijel, Algeria to evaluate their behavior and uptake by Ditrichia viscosa, Juncus effusus and Solanum nigrum. In our research we tried to study the capacity of these spontaneous plants to accumulate and to translocate heavy metals from soil to their tissues during three years. The heavy metals examined in the soils of the study area showed variations in concentrations, the study area may be practically unpolluted with Zn and Pb (CF; 0.45 and 0.98 successively) and very contaminated with Cd (CF; 8.53). According to the results obtained, the soil is uncontaminated with lead (Igeo=-0.60) and zinc (Igeo= -1.42) but it is heavily contaminated with cadmium (Igeo=2.5) along the study area. Overall the BCFS (bioconcentration factors) are superior to 1, for the all heavy metals and species. However, BCFs follow the following order; BCFZn>BCFPb>BCFCd for Ditrichia viscosa, the following order BCFPb>BCFZn>BCFCd for Juncus effuses and follow the following order; BCFZn>BCFCd>BCFPb for Solanum nigrum. The TFs (translocation factor) of the present study showed that Solanum nigrum can translocate the three of the metals into their aboveground parts.
显示更多 [+] 显示较少 [-]Synthesis and characterization of activated carbon from biowaste-walnut shell and application to removal of uranium from waste
2020
Yaman, M. | Demirel, M. H.
The aim of this study is to synthesize and characterize an economical and environmentally-friendly adsorbent with high adsorption capacity. For this purpose, the walnut shells (Juglans regia L.) were chemically modified using sulfuric and citric acids, separately. After pyrolysis and synthesis of activated carbon (AC), the optimization of conditions at the preconcentration/removal step was performed using parameters such as pH and contact time for uranium in the model solutions. The measurements were carried out by inductively coupled plasma-mass spectrometry (ICP-MS). From the shapes of the BET isotherms, it may be stated that activated carbon exhibit type I. It was found that the surface area and total pore volume of the activated carbon were 696.6 m2/g and 0.35 mL/g, respectively. The adsorption capacity was found to be 220 mg/g. It was found that the optimum pH is 6.0 for preconcentration/removal using AC obtained by sulfuric acid as chemically-modifier. The optimized method was applied to determination of U at ng/mL levels in the model solutions.
显示更多 [+] 显示较少 [-]Effect of Co-existing Heavy Metals and Natural Organic Matter on Sorption/Desorption of Polycyclic Aromatic Hydrocarbons in Soil: A Review
2020
Saeedi, M. | Li, Loretta Y. | Grace, John R.
Polycyclic aromatic hydrocarbons (PAHs), abundant in mixed contaminant sites, often coexist with heavy metals. The fate and remediation of PAHs depend heavily on the sorption and desorption behavior of these contaminants. The sorption behavior can in turn be highly affected by certain soil components and properties, such as soil organic matter (SOM) and the presence of heavy metals. Through review of the literature focused on research from 2006 to 2018, this paper discusses interactions, challenges, influencing factors and potential synergies in sorption/desorption of mixed PAHs and heavy metal contamination of soil. The presence of either natural organic matter or heavy metals can enhance the sorption capability of fine soil, retarding the PAHs in the solid matrix. The co-existence of SOM and heavy metals has been reported to have synergistic effect on PAHs sorption. Enhanced and surfactant desorption of PAHs are also affected by the presence of both SOM and metals. Remediation techniques for PAHs removal from soil, such as soil washing, soil flushing and electrokinetics, can be affected by the presence of SOM and heavy metals. More detailed studies on the simultaneous effects of soil components and properties on the sorption/desorption of PAHs are needed to enhance the effectiveness of PAHs remediation technologies.
显示更多 [+] 显示较少 [-]Sustainability of Aluminium Oxide Nanoparticles Blended Mahua Biodiesel to the Direct Injection Diesel Engine Performance and Emission Analysis
2020
Rastogi, P. M. | Kumar, N. | Sharma, A. | Vyas, D. | Gajbhiye, A.
The study investigates the effect of aluminium oxide nanoparticles as an additive to Madhuca Indica (mahua) methyl ester blends on performance, emission analysis of a single-cylinder direct injection diesel engine operated at a constant speed at different operating conditions. The test fuels are indicated as B10A0.2, B10A0.4, B20A0.2, B20A0.4 and diesel respectively. The results indicate that the brake thermal efficiency for aluminium oxide nanoparticles blended biodiesel increases slightly when compared to the mineral diesel. The carbon monoxide (CO), unburnt hydrocarbon (HC) and smoke emission marginally decrease as compared to mineral diesel. Oxides of nitrogen (NOx) emissions are minimum for the aluminium oxide nanoparticles blended mahua methyl esters. Higher cylinder gas pressure and heat release rate were observed for aluminium oxide nanoparticles blended mahua methyl ester. From the study, the blending of aluminium oxide nanoparticles in biodiesel blends produces a most promising results in engine performance and also reduces the harmful emission from the engines.
显示更多 [+] 显示较少 [-]Assessment of Heavy Metals Contamination and the Risk of Target Hazard Quotient in Some Vegetables in Isfahan
2020
Miranzadeh Mahabadi, H. | Ramroudi, M. | Asgharipour, M. R. | Rahmani, H. R. | Afyuni, M.
The main objective of this study is to evaluate heavy metals contamination of highly consumed vegetables and hazardous effects of consuming these vegetables. The study was conducted in vegetable fields in three different regions according to the level of environmental pollutions, including "Isfahan", "Flavarjan" and "Faridan, Golpayegan and Natanz". Six types of vegetables in each field with three replicates in each region were selected in the summer of 2017 by the random sampling method from vegetable fields. The level of heavy metals (Pb, Cu, Co, Cd and Cr) in vegetables has been measured for each sample. The result showed that in the Isfahan region, the highest daily intake of Pb, Cu, Co, Cd and Cr for the consumption of all the vegetables was obtained in the recipients. The highest target hazard quotient for non-cancerous diseases of contaminated vegetables was 28.9 and 21.1 in "Isfahan" for children and adults, respectively. The target hazard quotient for vegetable consumption was greater than one and at high hazard for both age groups. The principal component analysis showed that the contamination by the heavy metals in the "Isfahan" and "Falavarjan" regions overlapped and the risk of contamination of heavy metals in urban vegetables in both regions increased the hazard of non-cancerous diseases. It is highly recommended that the quality standards of foods that are imposed on the production of food crops.
显示更多 [+] 显示较少 [-]Performance of a Dual Chamber Microbial Fuel Cell using Sodium Chloride as Catholyte
2020
Singh, K. | Dharmendra, .
Microbial fuel cell represents an emerging technology to attain electrical energy from wastewater. There are several alternative methods available for wastewater treatment; Microbial fuel cell is one of them, which generates green energy from wastewater for making a contribution to renewable sources of energy. This study states the performance of microbial fuel cell with different parameters i.e., catholyte, electrodes, and initial COD concentration. Sodium chloride was used as catholyte and graphite rods were used as both electrodes. The sodium chloride concentrations in the cathode and initial chemical oxygen demand have also been optimized. The optimum sodium chloride of 70 mM in the cathode solution generates the maximum power density of 408.98μW/m2. As the sodium chloride concentration increases in catholyte, the capacity for power production also increases. The voltage output of Microbial fuel cell increases when the initial concentration of chemical oxygen demand increases to a peak value of 1500 mg/l and if the value exceeds this limit, the performance of Microbial fuel cell (in terms of voltage) starts decreasing. The chemical oxygen demand removal efficiency of a microbial fuel cell with simple graphite electrode and graphite electrodes with coated iron were 79% and 90% respectively.
显示更多 [+] 显示较少 [-]Study of Solute Dispersion with Source/Sink Impact in Semi-Infinite Porous Medium
2020
Kumar, R. | Chatterjee, A. | Singh, M. K. | Singh, V. P.
Mathematical models for pollutant transport in semi-infinite aquifers are based on the advection-dispersion equation (ADE) and its variants. This study employs the ADE incorporating time-dependent dispersion and velocity and space-time dependent source and sink, expressed by one function. The dispersion theory allows mechanical dispersion to be directly proportional to seepage velocity. Initially the aquifer is assumed contaminant free and an additional source term is considered at the inlet boundary. A flux type boundary condition is considered in the semi-infinite part of the domain. Laplace transform technique (LTT) is then applied to obtain a closed form analytical solution. The effect of source/sink term as a function in the one-dimensional advection-dispersion equation is explained through the graphical representation for the set of input data based on similar data available in hydrological literature. Matlab software is used to obtain the graphical representation of the obtained solution. The obtained analytical solution of the proposed model may be helpful in the groundwater hydrology areas.
显示更多 [+] 显示较少 [-]Optimization of Crystal Violet Adsorption by Chemically Modified Potato Starch Using Response Surface Methodology
2020
Bahrami, M. | Amiri, M. J. | Bagheri, F.
In this research, a response surface methodology (RSM) was used to investigate the effects of independent parameters (pH, contact time, temperature, adsorbent dosage, and initial concentration of pollutant), their simultaneous interactions, and quadratic effects on crystal violet adsorption onto two starch based materials in the form of batch experiments. The characterizing results indicated that there is no significant difference between the potato starch and synthesized starch phosphate, as phosphorylation has not changed the crystalline structure of starch inside the granules. The maximum removal efficiency of crystal violet ions was obtained 99 % at the optimum adsorption conditions of initial concentration 213.54 mg/L, adsorbent dosage 0.25 g, contact time 14.99 min, temperature 15 °C, and initial pH of solution 9. RSM outputs showed that the maximum adsorption of crystal violet ions by could be achieved by raising pH and adsorbent dosage, and decreasing the initial crystal violet concentration. While temperature and contact time are not effective parameters in crystal violet removal from aqueous solutions using synthesized starch phosphate. Generally, the RSM model is suitable to optimize the experiments for dye elimination by adsorption, where the modified starch phosphate would be an effective adsorbent for treating crystal violet solution.
显示更多 [+] 显示较少 [-]