细化搜索
结果 2011-2020 的 4,367
Enzymes as Biomarkers of Environmental Stress in African Catfish (Clarias gariepinus) in Osun State, Nigeria 全文
2017
Omolara Titilayo Aladesanmi | Femi Kayode Agboola | Rapheal Emuebe Okonji
Background. Many natural aquatic bodies have been contaminated with heavy metals released from domestic, industrial and other anthropogenic activities. Fish are an important bioindicator species and play an important role in the monitoring of water pollution. Objectives. This study shows the effect of heavy metals on the distribution of glutathione S-transferases (GST), catalase, rhodanese and 3-mercaptopyruvate sulphur transferase (3-MST) isolated from the liver, gills, fins and muscle of Clarias gariepinus. Methods. Glutathione S-transferase, catalase, rhodanese and 3-mercaptopyruvate S-transferase enzymes were isolated from the liver and gills of fish by homogenization of each tissue (with specific buffers for each enzyme) and centrifugation. Serial dilutions of the crude enzymes were then assayed for residual enzymatic activities using standard enzyme assay protocol. Results. The results showed heavy metals in the liver and muscle of the investigated fish. This study indicated significant accumulation of heavy metals in the tissues/organ of the fish from Ilesha, Osogbo and Yakoyo fish ponds. These are three main towns in Osun State where the major occupation is fish farming. The relationship between enzymatic activities and heavy metal content in C gariepinus tissue showed positive and significant (p<0.05) correlations between lead (Pb) and GST as well as chromium (Cr) and GST. This implies that higher concentrations of Pb and Cr induced the expression of greater GST activity in the fish tissue. Conclusions. The study concluded that the pattern of response of GST, catalase, rhodanese and 3-MST activities in the various organs/tissues of C gariepinus to the heavy metals suggests that the excitation or inhibitions of their activities are organ specific. Further biochemical studies of fish tissues/organs are needed to characterize the enzymatic changes associated with heavy metal pollution. Competing Interests: The authors declare no competing financial interests
显示更多 [+] 显示较少 [-]Assessment of Radon Levels in Drinking Water Wells in St. Catherine, Jamaica 全文
2017
Leonard Smith | Mitko Voutchkov
Background. Radon is a known carcinogen and contaminant in drinking water wells, but is not monitored in drinking water quality programs in Jamaica. Objective. The present study was conducted to obtain radon data in local drinking water and evaluate potential health risks. The data will contribute to determining the level of compliance to public health criteria for radon and to develop a monitoring program based on the identified risks. Methods. This study assesses the concentration of radon in 22 drinking water wells in the parish of St. Catherine, Jamaica. Samples were collected for radon, with 12 other measurements gathered including pH, conductivity, TDS, alkalinity, hardness, phosphates, nitrates, chloride, sulfates, turbidity, well depth and geological features. The data were analyzed for compliance to international limits and association with geological and other parameters. Results. The average radon level was 18 Bq/L ± 2 Bq/L and varied from a low of 11 Bq/L ± 1 Bq/L to a high of 41 Bq/L ± 1 Bq/L. There was a positive correlation between radon levels and both alkalinity and turbidity. No relationship of any significance, however, was identified with the other physicochemical parameters. All the study results fell within the European Union (EU) limit of 100 Bq/L, and well within the United States Environmental Protection Agency (USEPA) limit of 147 Bq/L. Most of the wells in this parish have radon levels exceeding the proposed USEPA limit of 11 Bq/L. The proposed limits are intended to support radon mitigation programs to manage radon in air. No limits are provided in the newest edition of the World Health Organization's (WHO) Guidelines for Safe Drinking Water Quality. Conclusions. Most wells in the study area met existing international limits. Almost all, however, did not meet the proposed USEPA limit for locations without radon mitigation programs. This indicates the need to establish national screening levels for radon, consistent with WHO and USEPA recommendations. Competing Interests. The authors declare no competing financial interests.
显示更多 [+] 显示较少 [-]Contamination Levels and Sources of Heavy Metals and a Metalloid in Surface Soils in the Kumasi Metropolis, Ghana 全文
2017
Osei Akoto | Nesta Bortey-Sam | Yoshinori Ikenaka | Shouta M.M. Nakayama | Elvis Baidoo | Yared Beyene Yohannes | Mayumi Ishizuka
Background. Environmental contamination with heavy metals and metalloids due to industrial, smelting and mining activities have become common in large and growing cities. Kumasi is one of the most industrialized cities in Ghana and experiences metal pollution due to recent and past activities. Although metals are naturally abundant in the area, their accumulation in soils could potentially lead to adverse effects on local ecosystems. Objectives. The aims of this study were to determine the distribution, enrichment, geoaccumulation and sources of metals in Kumasi soils and to estimate the contamination factor (CF) and pollution load index (PLI) of these metals in soils. Methods. Concentrations of eight heavy metals and a metalloid were determined in 112 soil samples randomly collected from 31 sampling sites in the area. In addition, 5 soil samples were collected from a pristine site (Kwame Nkrumah University of Science and Technology Botanical Gardens) for data comparison, to determine the local background values for metal concentrations and to evaluate the extent of metal pollution in the study area. Results. Heavy metals such as zinc (Zn), lead (Pb), cadmium (Cd) and chromium (Cr) were enriched in 65, 32, 58 and 93% of the sampling sites, respectively, and geo-accumulation indexes for Cr, Zn, Cd, mercury (Hg) and Pb showed moderate to extreme contamination in 100, 97, 77, 65 and 45% of the sampling sites, respectively. Principal component and cluster analyses revealed that industrial activities including mining were the major sources of metals in Kumasi soils with high metal input in the community of Suame. Distribution maps revealed hotspots of Cd, nickel (Ni), arsenic (As), cobalt (Co), copper (Cu) and Pb in Suame. The highest CFs for Cu, Cd, Ni, As, Co and Pb highlighted anthropogenic inputs in Suame, while Hg was highest in Mbrom, Zn in Suntreso, and Cr in Aboabo. Conclusions. The PLI of metals revealed Suame as the most polluted study site, while Anomangye and Bomso were the least polluted. Competing Interests. The authors declare no competing financial interests.
显示更多 [+] 显示较少 [-]Clay-to-Carbon Ratio Controls the Effect of Herbicide Application on Soil Bacterial Richness and Diversity in a Loamy Field 全文
2017
Herath, H.M. L. I. | Moldrup, Per | de Jonge, LisW. | Nicolaisen, Mogens | Norgaard, Trine | Arthur, Emmanuel | Paradelo, Marcos
Soil texture and soil organic carbon (OC) influence the bacterial microenvironment and also control herbicide sorption. A field-scale exploratory study was conducted to investigate the potential interaction between soil texture parameters, herbicides, and soil bacterial richness and diversity. Glyphosate and bentazon were used to evaluate the herbicidal effect on bacterial community under different conditions created by clay and OC gradients in a loamy field. Metabarcoding by high-throughput sequencing of bacterial rDNA was used to estimate bacterial richness and diversity using OTUs, abundance-based coverage (ACE), Shannon diversity index, and phylogenetic diversity. In general, bacterial richness and diversity increased after bentazon application and decreased after glyphosate application. There was no significant effect for field locations with Dexter n (the ratio between clay and OC) values below 4.04 (the median of the values in the field study). The correlation coefficient (r) between bacterial richness and clay decreased after bentazon application, but increased after glyphosate application. Correlations between Dexter n and bacterial indices followed the same pattern, decreasing after bentazon application and increasing after glyphosate application. This indicated that the specific chemical nature of individual herbicides affected bacterial communities. This study reinforced the importance of including soil physical and chemical characteristics to explain the influence of pesticides on the variation in soil bacterial communities in agroecosystems.
显示更多 [+] 显示较少 [-]Effects of Dairy Manure Management Practices on E. coli Concentration and Diversity 全文
2017
Howard, KeyaJ. | Martin, Emily | Gentry, Terry | Feagley, Sam | Karthikeyan, Raghupathy
Dairy cattle manure has been implicated as a major source of fecal contamination in non-point source agricultural runoff in watersheds. Four different dairy farms in central Texas, each utilizing a different dairy manure management practice, in the Leon River watershed were sampled for E. coli using EPA Method 1603, with a percentage of isolates genotyped and phylotyped using the Clermont quadruplex PCR method. E. coli concentration was reduced as manure moved through the management process with tiered management systems lowering concentration the most. E. coli genotypes showed no correlation with sampling season or management practice. The highest percentage of unique genotypes was observed in dairy 2, which consisted of a settling basin then lagoon. One genotype was seen across all dairies and composed 15% of all genotypes characterized. E. coli phylotypes showed no seasonal or management practice trend. B1 was the most common phylotype isolated from all dairies and time periods, which was expected. Potentially pathogenic phylotypes were rarely observed, which could indicate isolation from pathogenic E. coli introduction. Dairy manure management practices that separate solid from liquid waste reduced E. coli concentrations the most based on these results.
显示更多 [+] 显示较少 [-]Microbial and Physico-chemical Characteristics Associated with the Incidence of Legionella spp. and Acanthamoeba spp. in Rainwater Harvested from Different Roofing Materials 全文
2017
Dobrowsky, Penelope H. | Khan, Sehaam | Cloete, Thomas E. | Khan, Wesaal
The incidence of Legionella and Acanthamoeba spp. was correlated to microbial indicator analysis and physico-chemical characteristics of rainwater harvested from catchment areas constructed from galvanized zinc, Chromadek®, and asbestos, respectively. Quantitative PCR (qPCR) analysis indicated that no significant difference (p > 0.05) in copy numbers of Legionella spp. and Acanthamoeba spp. was recorded in tank water samples collected from the respective roofing materials. However, significant positive Spearman (ρ) correlations were recorded between the occurrences of Legionella spp. gene copies vs. nitrites and nitrates (p = 0.05) in all tank water samples. Significant positive correlations were also established between Acanthamoeba spp. vs. barium (p = 0.03), magnesium (p = 0.02), sodium (p = 0.02), silicon (p = 0.05), arsenic (p = 0.03), and phosphate (p = 0.01), respectively. Additionally, while no significant correlations were observed between Legionella spp. vs. the indicator bacteria (p > 0.05), positive correlations were observed between Acanthamoeba spp. vs. total coliforms (p = 0.01) and Acanthamoeba spp. vs. Escherichia coli (p = 0.02), respectively. Results obtained in the current study thus indicate that the incidence of Acanthamoeba and Legionella spp. in harvested rainwater was not influenced by the roofing material utilized. Moreover, it is essential that the microbial quality of rainwater be assessed before this water source is implemented for potable and domestic uses as untreated harvested rainwater may lead to legionellosis and amoebae infections.
显示更多 [+] 显示较少 [-]Field Performance of Bioretention Systems for Runoff Quantity Regulation and Pollutant Removal 全文
2017
Jiang, Chunbo | Li, Jiake | Li, Huaien | Li, Yajiao | Chen, Li
Bioretention systems are of immense importance as they serve as small “sponges” for cities, cutting stormwater runoff, removing pollution, and using precipitation resources. However, performance data for these facilities are generally lacking, particularly at the field scale. This study investigated the runoff quantity regulation and pollutant removal performance of bioswale and rain garden systems from 2014 to 2017. A performance assessment of these facilities demonstrated that anti-seepage rain garden, bioswale-A, and bioswale-B effectively retained inflow volumes by the filter media, reducing runoff volumes by 54.08, 98.25, and 77.65%, respectively, on average, with only two events of overflowing. According to the water quality data in 24 rainfall events, the main pollutant indexes for the new city include total nitrogen and chemical oxygen demand, and the median values for their respective effluent event median concentrations were 1.29 and 40.13 mg/L for anti-seepage rain garden and 1.68 and 74.00 mg/L for bioswale-B systems. The mean values of pollutant removal of the three bioretention systems, except for infiltration rain garden, were 39.8–59.73% (median = 54.32%), 61.06–72.66% (median = 73.47%), and 76.67%–88.16% (median = 80.64%). Meanwhile, outflow volume of water was found to be most influenced by inflow volumes for the bioswales and anti-seepage rain garden. Mass removals were higher than concentrations owing to water volume attenuation. Based on the data of monitored pollution loads, this study estimated the annual pollutant load removal as 75.45 and 90.7% for anti-seepage rain garden and bioswale-B according to the percent of monitoring rainfall depth in total annual precipitation. This study also established the target pollutant service life model on the basis of accumulated annual load and media adsorption capacity. The results of this study will contribute to a greater understanding of the treatment performance of bioretention systems, assisting in the design, operation, and maintenance of them.
显示更多 [+] 显示较少 [-]A Comparison of Trace Gases and Particulate Matter over Beijing (China) and Delhi (India) 全文
2017
Zheng, Sheng | Singh, R. P. (Ramesh P.) | Wu, Yuzhe | Wu, Cifang
Air pollution represents a significant fraction of the total mortality estimated by the World Health Organization (WHO) global burden of disease project (GBD). The present paper discusses the characteristics of trace gases (O₃, NO, NO₂, and CO) and particulate matter (PM₁₀ and PM₂.₅) in two Asian megacities, Delhi (India) and Beijing (China). A continuous measurement of trace gases and particulate matter are considered from 12 measuring sites in Beijing and 8 sites in Delhi. Over Beijing, the annual average of PM₂.₅, PM₁₀, O₃, NO₂, and CO is, respectively, 85.3, 112.8, 58.7, and 53.4 μg/m³ and 1.4 mg/m³, and, respectively, over Delhi 146.5, 264.3, 24.7,and 19.8 μg/m³ and 1.73 mg/m³. From the spatial variations of pollutants, the concentrations of particulate matter and trace gases are observed to be much higher in the urban areas compared to the suburban areas. The higher average concentrations of PM₁₀ and PM₂.₅ over Delhi and Beijing are observed during winter season compared with other seasons. The maximum diurnal variation of PM₁₀ concentration is observed during winter season over Beijing and Delhi. The comparison of trace gases shows that the O₃ concentrations during daytime are obviously higher compared with nighttime, and the highest diurnal variation of O₃ is observed during summer. The concentrations of CO are highest during winter season, and higher concentrations are observed during nighttime compared to daytime. The O₃ and CO show negative correlation over Beijing and Delhi. The negative correlation between O₃ and NO₂ is merely observed over Beijing, while CO and NO₂ concentrations, in contrast, show positive correlation over Beijing.
显示更多 [+] 显示较少 [-]Evaluation of Nitrogen Concentration in Final Effluent of Advanced Nitrogen-Removal Onsite Wastewater Treatment Systems (OWTS) 全文
2017
Lancellotti, BrittanyV. | Loomis, GeorgeW. | Hoyt, KevinP. | Avizinis, Edward | Amador, JoseA.
Advanced nitrogen (N)-removal onsite wastewater treatment systems (OWTS) are installed in coastal areas throughout the USA to reduce N loading to groundwater and marine waters. However, final effluent total nitrogen (TN) concentration from these systems is not always routinely monitored, making it difficult to determine the extent to which they contribute to N loads. We monitored the final effluent TN concentration of 42 advanced N-removal OWTS within the Greater Narragansett Bay Watershed, Rhode Island between March 2015 and August 2016. The compliance rate with the State of Rhode Island final effluent standard (TN ≤ 19 mg N/L) was 64.3, 70.6, and 75.0% for FAST, Advantex, and SeptiTech systems, respectively. The median (range) final effluent TN concentration (mg N/L) was 11.3 (0.1–41.6) for SeptiTech, 14.9 (0.6–61.6) for Advantex, and 17.1 (0.6–104.9) for FAST systems. Variation in final effluent TN concentration was not driven by temperature; TN concentrations plotted against effluent temperature values resulted in R ² values of 0.001 for FAST, 0.007 for Advantex, and 0.040 for SeptiTech systems. The median effluent TN concentration for all the systems in our study (16.7 mg N/L) was greater than reported for Barnstable County, MA systems (13.3 mg N/L), which are monitored quarterly. Depending on technology type, ammonium (NH₄⁺), nitrate (NO₃⁻), alkalinity, forward flow, biochemical oxygen demand (BOD), and effluent temperature best predicted effluent TN concentrations. Service providers made adjustments to seven underperforming systems, but TN was reduced to 19 mg N/L in only two of the seven systems. Advanced N-removal OWTS can reduce TN to meet regulations, and monitoring of these systems can enable service providers to proactively manage systems. However, improvement of performance may require recursive adjustments and long-term monitoring.
显示更多 [+] 显示较少 [-]Stabilization of Cadmium- and Lead-Contaminated Sites Using Sodium Tetraethylenepentamine-Multi Dithiocarbamate 全文
2017
Zhou, Shaohua | Zhao, Huangpu | Zhang, Bingru | Fang, Ping
Two soil amendments, KH₂PO₄ and sodium tetraethylenepentamine–multi dithiocarbamate (TEPA/CSSNa), were applied to heavy metal-contaminated sites, and their corresponding stabilization effects were compared. Three kinds of procedures, namely, sequential extraction procedure (SEP), toxicity characteristic leaching procedure (TCLP), and diethylenetriaminepentaacetic acid (DTPA) extraction procedure, were adopted to examine the potential of using TEPA/CSSNa to stabilize Cd and Pb in polluted sites. Simplified bioaccessibility extraction test (SBET) was used to investigate the bioaccessibility of Cd and Pb. TCLP and DTPA results showed that TEPA/CSSNa was more efficient than KH₂PO₄ in reducing the mobility of Cd and Pb. SBET results indicated that the bioaccessibility of Cd and Pb decreased with increasing dose of TEPA/CSSNa. The mobility rates of Cd and Pb decreased to 0.26 and 0 %, respectively, when using 3 % TEPA/CSSNa. The exchangeable and carbonate fractions of Cd and Pb were gradually converted into organic matter–sulfate compounds. After 1 year, natural aging tests revealed that organic matter–sulfate fractions of Cd and Pb increased and the labile fractions (exchangeable and carbonate fractions) decreased in the treated soil.
显示更多 [+] 显示较少 [-]