细化搜索
结果 2021-2030 的 7,995
Improvement of alfalfa resistance against Cd stress through rhizobia and arbuscular mycorrhiza fungi co-inoculation in Cd-contaminated soil 全文
2021
Wang, Xia | Fang, Linchuan | Beiyuan, Jingzi | Cui, Yongxing | Peng, Qi | Zhu, Shilei | Wang, Man | Zhang, Xingchang
Rhizobia and arbuscular mycorrhiza fungi (AMF) are important symbiotic microbes that are advantageous to plants growing in metal-contaminated soil. However, it remains unclear how inoculated microbes affect rhizosphere microbial communities or whether subsequent changes in rhizosphere microbiomes contribute to improving plant resistance under metal stress. This study investigated the effects of rhizobia and AMF inoculation on alfalfa resistance to Cd stress. The response of rhizosphere microbial communities to inoculation and its role in increasing alfalfa’ ability to cope with stress were further analyzed using high-throughput sequencing of 16S and ITS rRNA genes. Results showed that single rhizobia or AMF inoculation significantly improved alfalfa resistance to Cd stress, while their co-inoculation resulted in the greatest overall improvement. Improved resistance was reflected by the significant mitigation of Cd-induced lipid peroxidation and reactive oxygen species (ROS) stress caused by increases in antioxidant enzyme activities along with co-inoculation. Furthermore, co-inoculation significantly altered the rhizosphere microbial community structure by decreasing fungal community diversity and increasing bacterial community diversity. Results of partial least squares path modeling (PLS-PM) and variation partitioning analysis (VPA) showed that the rhizosphere bacterial community predominated over the fungal community with respected to improvements in resistance to Cd stress under the co-inoculation treatments. This improvement was specifically seen in the enrichment of certain key bacterial taxa (including Proteobacteria, Actinobacteria, Acidobacteria, and Chloroflexi) induced by the rhizobia and AMF co-inoculation, enhancing alfalfa’ ability to uptake rhizosphere nutrients and reduce its release of photosynthetically-derived carbon (C) into soil. Our findings revealed that the co-inoculation of multiple symbiotic microbes can assist plants to effectively cope with Cd stress, providing a greater understanding of rhizosphere bacterial taxa in the microbe-induced phytomanagement.
显示更多 [+] 显示较少 [-]Controlled treatment of a high velocity anisotropic aquifer model contaminated by hexachlorocyclohexanes 全文
2021
Bouzid, Iheb | Maire, Julien | Laurent, Fabien | Broquaire, Mathias | Fatin-Rouge, Nicolas
Xanthan gels were assessed to control the reductive dechlorination of hexachlorocyclohexanes (HCHs) and trichlorobenzenes (TCBs) in a strong permeability contrast and high velocity sedimentary aquifer. An alkaline degradation was selected because of the low cost of NaOH and Ca(OH)₂. The rheology of alkaline xanthan gels and their ability to deliver alkalinity homogeneously, while maintaining the latter, were studied. Whereas the xanthan gels behaved like non-Newtonian shear-thinning fluids, alkalinity and Ca(OH)₂ microparticles had detrimental effects, yet, the latter decreased with the shear-rate. Breakthrough curves for the NaOH and Ca(OH)₂ in xanthan solutions, carried out in the lowest permeability soil (9.9 μm²), demonstrated the excellent transmission of alkalinity, while moderate pressure gradients were applied. Injection velocities ranging from 1.8 to 3.8 m h⁻¹ are anticipated in the field, given the permeability range from 9.9 to 848.7 μm². Despite a permeability contrast of 8.7 in an anisotropic aquifer model, the NaOH and the Ca(OH)₂ both in xanthan gels spread only 5- and 7-times faster in the higher permeability zone, demonstrating that the delivery was enhanced. Moreover, the alkaline gels which were injected into a high permeability layer under lateral water flow, showed a persistent blocking effect and longevity (timescale of weeks), in contrast to the alkaline solution in absence of xanthan. Kinetics of alkaline dechlorination carried out on the historically contaminated soil, using the Ca(OH)₂ suspension in xanthan solution, showed that HCHs were converted in TCBs by dehydrodechlorination, whereas the latter were then degraded by reductive hydrogenolysis. Degradation kinetics were achieved within 30 h for the major and most reactive fraction of HCHs.
显示更多 [+] 显示较少 [-]Lycopene prevents DEHP-induced hepatic oxidative stress damage by crosstalk between AHR–Nrf2 pathway 全文
2021
Zhao, Yi | Bao, Rong-Kun | Zhu, Shi-Yong | Talukder, Milton | Cui, Jia-Gen | Zhang, Hao | Li, Xue-Nan | Li, Jin-Long
Di (2-ethylhexyl) phthalate (DEHP) is a widespread plasticizer that persists in the environment and can significantly contribute to serious health hazards of liver especially oxidative stress injury. Lycopene (LYC) as a carotenoid has recently gained widespread attention because of antioxidant activity. However, the potential mechanism of DEHP-induced hepatotoxicity and antagonism effect of LYC on it are still unclear. To explore the underlying mechanisms of this hypothesis, the mice were given by gavage with LYC (5 mg/kg) and DEHP (500 or 1000 mg/kg). The data suggested that DEHP caused liver enlargement, reduction of antioxidant activity markers, increase of oxidative stress indicators and disorder of cytochrome P450 enzymes system (CYP450s) homeostasis. DEHP-induced reactive oxygen species (ROS) activated the NF-E2-relatedfactor2 (Nrf2) and nuclear xenobiotic receptors (NXRs) system including Aryl hydrocarbon receptor (AHR), Pregnane X receptor (PXR) and Constitutive androstane receptor (CAR). Interestingly, these disorders and injuries were prevented after LYC treatment. Taken together, DEHP administration resulted in hepatotoxicity including oxidative stress injury and disordered CYP450 system, but these alterations might be ameliorated by LYC via crosstalk between AHR–Nrf2 pathway.
显示更多 [+] 显示较少 [-]Organophosphorus pesticides exert estrogen receptor agonistic effect determined using Organization for Economic Cooperation and Development PBTG455, and induce estrogen receptor-dependent adipogenesis of 3T3-L1 adipocytes 全文
2021
Kim, Jin-Tae | Lee, Hong Jin | Lee, Hee-Seok
Various chemicals containing pesticides can induce adipogenesis and cause obesity. Organophosphorus pesticides have been used for pest control. Here, we investigated the estrogen receptor (ER)-dependent adipogenesis-inducing effect of representative organophosphorus pesticides (OPs), diazinon, phoxim, terbufos and tolclofos-methyl in 3T3-L1 adipocytes. Four OPs exhibited ER agonistic effect, determined using the OECD Performance Based Test Guideline No. 455; in vitro ER stably transfected transactivation assay using ERα-HeLa-9903 cell line, through binding affinity to ERα. Additionally, they increased lipid droplet accumulation in a dose-dependent manner, which was suppressed by ICI182,780, a well-known ER antagonist. Four OPs treatment induced peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPα), and perilipin expression. Furthermore, PPARγ, C/EBPα and perilipin expression was inhibited by co-treatment with ICI182,780. The increased mRNA expression of lipoprotein lipase and fatty acid synthase by four OPs was suppressed by co-treatment with ICI182,780. These results indicated that diazinon, phoxim, terbufos, and tolclofos-methyl might have adipogenesis-inducing effect mediated by interacting with ER.
显示更多 [+] 显示较少 [-]Effects of high-dose bisphenol A on the mouse oral mucosa: A possible link with oral cancers 全文
2021
Araujo Almeida, Tatiana Fernandes | Oliveira, Sicília Rezende | Mayra da Silva, Janine | Fernandes de Oliveira, Ana Laura | de Lourdes Cardeal, Zenilda | Menezes, Helvécio Costa | Gomes, José Messias | Campolina-Silva, Gabriel Henrique | Oliveira, Cleida Aparecida | Macari, Soraia | Garlet, Gustavo Pompermaier | Alves Diniz, Ivana Márcia | Leopoldino, Andréia Machado | Aparecida Silva, Tarcília
Bisphenol A (BPA) is an endocrine disrupting chemical able to promote hormone-responsive tumors. The major route of BPA contamination being oral, the aim of the present study was to investigate BPA effects on oral cells. Here, we evaluated the impact of sub-chronic in vivo exposure to BPA and its in vitro effects on neoplastic and non-neoplastic oral cells. We evaluated the oral mucosa of mice chronically exposed to BPA (200 mg/L). The response of keratinocytes (NOK–SI) and Head and Neck (HN) Squamous Cell Carcinoma (SCC), HN12 and HN13 cell lines to BPA was examined. In vivo, BPA accumulated in oral tissues and caused an increase in epithelial proliferative activity. BPA disrupted the function of keratinocytes by altering pro-survival and proliferative pathways and the secretion of cytokines and growth factors. In tumor cells, BPA induced proliferative, invasive, pro-angiogenic, and epigenetic paths. Our data highlight the harmful effects of BPA on oral mucosa and, tumorigenic and non-tumorigenic cells. Additionally, BPA may be a modifier of oral cancer cell behavior by prompting a functional shift to a more aggressive phenotype.
显示更多 [+] 显示较少 [-]Opposite impact of emission reduction during the COVID-19 lockdown period on the surface concentrations of PM2.5 and O3 in Wuhan, China 全文
2021
Yin, Hao | Liu, Cheng | Hu, Qihou | Liu, Ting | Wang, Shuntian | Gao, Meng | Xu, Shiqi | Zhang, Chengxin | Su, Wenjing
To prevent the spread of the COVID-19 epidemic, the Chinese megacity Wuhan has taken emergent lockdown measures starting on January 23, 2020. This provided a natural experiment to investigate the response of air quality to such emission reductions. Here, we decoupled the influence of meteorological and non-meteorological factors on main air pollutants using generalized additive models (GAMs), driven by data from the China National Environmental Monitoring Center (CNEMC) network. During the lockdown period (Jan. 23 – Apr. 8, 2020), PM₂.₅, PM₁₀, NO₂, SO₂, and CO concentrations decreased significantly by 45 %, 49 %, 56 %, 39 %, and 18 % compared with the corresponding period in 2015–2019, with contributions by S(meteos) of 15 %, 17 %, 13 %, 10 %, and 6 %. This indicates an emission reduction of NOₓ at least 43 %. However, O₃ increased by 43 % with a contribution by S(meteos) of 6 %. In spite of the reduced volatile organic compound (VOC) emissions by 30 % during the strict lockdown period (Jan. 23 – Feb. 14, 2020), which likely reduced the production of O₃, O₃ concentrations increased due to a weakening of the titration effect of NO. Our results suggest that conventional emission reduction (NOₓ reduction only) measures may not be sufficient to reduce (or even lead to an increase of) surface O₃ concentrations, even if reaching the limit, and VOC-specific measures should also be taken.
显示更多 [+] 显示较少 [-]A comprehensive and fast microplastics identification based on near-infrared hyperspectral imaging (HSI-NIR) and chemometrics 全文
2021
Vidal, Cristiane | Pasquini, Celio
Microplastic pollution is a global concern theme, and there is still the need for less laborious and faster analytical methods aiming at microplastics detection. This article describes a high throughput screening method based on near-infrared hyperspectral imaging (HSI-NIR) to identify microplastics in beach sand automatically with minimum sample preparation. The method operates directly in the entire sample or on its retained fraction (150 μm–5 mm) after sieving. Small colorless microplastics (<600 μm) that would probably be imperceptible as a microplastic by visual inspection, or missed during manual pick up, can be easily detected. No spectroscopic subsampling was performed due to the high-speed analysis of line-scan instrumentation, allowing multiple microplastics to be assessed simultaneously (video available). This characteristic is an advantage over conventional infrared (IR) spectrometers. A 75 cm² scan area was probed in less than 1 min at a pixel size of 156 × 156 μm. An in-house comprehensive spectral dataset, including weathered microplastics, was used to build multivariate supervised soft independent modelling of class analogy (SIMCA) classification models. The chemometric models were validated for hundreds of microplastics (primary and secondary) collected in the environment. The effect of particle size, color and weathering are discussed. Models' sensitivity and specificity for polyethylene (PE), polypropylene (PP), polyamide-6 (PA), polyethylene terephthalate (PET) and polystyrene (PS) were over 99% at the defined statistical threshold. The method was applied to a sand sample, identifying 803 particles without prior visual sorting, showing automatic identification was robust and reliable even for weathered microplastics analyzed together with other matrix constituents. The HSI-NIR-SIMCA described is also applicable for microplastics extracted from other matrices after sample preparation. The HSI-NIR principals were compared to other common techniques used to microplastic chemical characterization. The results show the potential to use HSI-NIR combined with classification models as a comprehensive microplastic-type characterization screening.
显示更多 [+] 显示较少 [-]Metal accumulation varies with life history, size, and development of larval amphibians 全文
2021
Smalling, Kelly L. | Oja, Emily B. | Cleveland, Danielle M. | Davenport, Jon M. | Eagles-Smith, Collin | Campbell Grant, Evan H. | Kleeman, Patrick M. | Halstead, Brian J. | Stemp, Kenzi M. | Tornabene, Brian J. | Bunnell, Zachary J. | Hossack, Blake R.
Amphibian larvae are commonly used as indicators of aquatic ecosystem health because they are susceptible to contaminants. However, there is limited information on how species characteristics and trophic position influence contaminant loads in larval amphibians. Importantly, there remains a need to understand whether grazers (frogs and toads [anurans]) and predators (salamanders) provide comparable information on contaminant accumulation or if they are each indicative of unique environmental processes and risks. To better understand the role of trophic position in contaminant accumulation, we analyzed composite tissues for 10 metals from larvae of multiple co-occurring anuran and salamander species from 20 wetlands across the United States. We examined how metal concentrations varied with body size (anurans and salamanders) and developmental stage (anurans) and how the digestive tract (gut) influenced observed metal concentrations. Across all wetlands, metal concentrations were greater in anurans than salamanders for all metals tested except mercury (Hg), selenium (Se), and zinc (Zn). Concentrations of individual metals in anurans decreased with increasing weight and developmental stage. In salamanders, metal concentrations were less correlated with weight, indicating diet played a role in contaminant accumulation. Based on batches of similarly sized whole-body larvae compared to larvae with their digestive tracts removed, our results indicated that tissue type strongly affected perceived concentrations, especially for anurans (gut represented an estimated 46–97% of all metals except Se and Zn). This suggests the reliability of results based on whole-body sampling could be biased by metal, larval size, and development. Overall, our data shows that metal concentrations differs between anurans and salamanders, which suggests that metal accumulation is unique to feeding behavior and potentially trophic position. To truly characterize exposure risk in wetlands, species of different life histories, sizes and developmental stages should be included in biomonitoring efforts.
显示更多 [+] 显示较少 [-]Algicidal mechanism of Raoultella ornithinolytica against Microcystis aeruginosa: Antioxidant response, photosynthetic system damage and microcystin degradation 全文
2021
Li, Dongpeng | Kang, Xin | Chu, Linglong | Wang, Yifei | Song, Xinshan | Zhao, Xiaoxiang | Cao, Xin
Water eutrophication caused by harmful algal blooms (HABs) occurs worldwide. It causes huge economic losses and has serious and potentially life-threatening effects on human health. In this study, the bacterium Raoultella sp. S1 with high algicidal efficiency against the harmful algae Microcystis aeruginosa was isolated from eutrophic water. The results showed that Raoultella sp. S1 initially flocculated the algae, causing the cells to sediment within 180 min and then secreted soluble algicidal substances that killed the algal cells completely within 72 h. The algicidal activity was stable across the temperature range −85.0 to 85.0 °C and across the pH range 3.00–11.00. Scanning electron microscopy (SEM) revealed the crumpling and fragmentation of cells algal cells during the flocculation and lysis stages. The antioxidant system was activated under conditions of oxidative stress, causing the increased antioxidant enzymes activities. Meanwhile, the oxidative stress response triggered by the algicidal substances markedly increased the malondialdehyde (MDA) and glutathione (GSH) content. We investigated the content of Chl-a and the relative expression levels of genes related to photosynthesis, verifying that the algicidal compounds attack the photosynthetic system by degrading the photosynthetic pigment and inhibiting the expression of key genes. Also, the results of photosynthetic efficiency and relative electric transport rate confirmed that the photosynthetic system in algal cells was severely damaged within 24 h. The algicidal effect of Raoultella sp. S1 against Microcystis aeruginosa was evaluated by analyzing the physiological response and photosynthetic system impairment of the algal cells. The concentration of microcystin-LR (MC-LR) slightly increased during the process of algal cells ruptured, and then decreased below its initial level due to the biodegradation of Raoultella sp. S1. To further investigate the algicidal mechanism of Raoultella sp. S1, the main components in the cell-free supernatant was analyzed by UHPLC-TOF-MS. Several low-molecular-weight organic acids might be responsible for the algicidal activity of Raoultella sp. S1. It is concluded that Raoultella sp. S1 has the potential to control Microcystis aeruginosa blooms.
显示更多 [+] 显示较少 [-]Spatially apportioning the source-oriented ecological risks of soil heavy metals using robust spatial receptor model with land-use data and robust residual kriging 全文
2021
Qu, Mingkai | Guang, Xu | Zhao, Yongcun | Huang, Biao
Previous ecological risk assessments were mainly concentration-oriented rather than source-oriented. Moreover, land use is usually related to source emissions but was rarely used to improve the source apportionment accuracy. In this study, the land-use effects of heavy metals (HMs) in surface (0–20 cm) and subsurface (20–40 cm) soils were first explored using ANOVA in a suburb of Changzhou City, China; next, based on robust absolute principal component scores-robust geographically weighted regression (RAPCS/RGWR), this study proposed RAPCS/RGWR with land-use type (RAPCS/RGWR-LUT) and compared its source apportionment accuracy with those of basic RAPCS/RGWR and commonly-used absolute principal component scores/multiple linear regression (APCS/MLR); then, the source-oriented ecological risks were apportioned based on RAPCS/RGWR-LUT and Hakanson potential ecological risk index method; finally, this study proposed robust residual kriging with land-use type (RRK) for spatially predicting the source-oriented ecological risks, and compared its spatial prediction accuracy with those of robust ordinary kriging (ROK) and traditionally-used ordinary kriging (OK). Results showed that: (i) by incorporating land-use effects, RAPCS/RGWR-LUT obtained higher source apportionment accuracy than RAPCS/RGWR and APCS/MLR; (ii) the two most important external input sources of the ecological risks were 'atmospheric deposition' (PERIₛᵤᵣfₐcₑ = 47.11 and PERIₛᵤbₛᵤᵣfₐcₑ = 35.27) and 'agronomic measure' (PERIₛᵤᵣfₐcₑ = 28.93 and PERIₛᵤbₛᵤᵣfₐcₑ = 20.37); (iii) the biggest ecological risk factor was soil Cd (ERₛᵤᵣfₐcₑ = 57.14 and ERₛᵤbₛᵤᵣfₐcₑ = 47.62), which was mainly contributed by 'atmospheric deposition' (ERₛᵤᵣfₐcₑ=33.14 and ERₛᵤbₛᵤᵣfₐcₑ=25.71); (iv) RRK obtained higher spatial prediction accuracy than ROK and OK; (v) the high-risk areas derived from 'atmospheric deposition' were mainly located in the southwest of the study area, and the high-risk areas derived from 'agronomic measure' were scattered in the agricultural land in the north and south of the study area. The above information provided effective spatial decision support for reducing the source-oriented input of the ecological risks of soil HMs in a large-scale area.
显示更多 [+] 显示较少 [-]