细化搜索
结果 211-220 的 7,995
Integrated approach of whole-genome analysis, toxicological evaluation and life cycle assessment for pyrene biodegradation by a psychrophilic strain, Shewanella sp. ISTPL2 全文
2021
Polycyclic aromatic hydrocarbons (PAHs) such as pyrene are universal contaminants existing in the environment which have known cancer-causing and mutagenic characteristics. A psychrophilic bacterial strain Shewanella sp. ISTPL2 was isolated from the sediment sample collected from the Pangong lake, Jammu & Kashmir, India. In our previous study, the pyrene degradation potential of the ISTPL2 strain was studied in both mineral salt media as well as in soil artificially spiked with different concentrations of pyrene. Whole-genome sequencing of ISTPL2 strain in the current study highlighted the key genes of pyrene metabolism, including alcohol dehydrogenase and ring hydroxylating dioxygenase alpha-subunit. Pyrene cytotoxicity was evaluated on HepG2, a human hepato-carcinoma cell line. The cytotoxicity of the organic extract decreased with the increasing duration of bacterial treatment. To develop a more sustainable biodegradation approach, the potential impacts were evaluated for human health and ecosystem using life-cycle assessment (LCA) following the ReCiPe methodology for the considered PAH. The results implemented that global warming potential (GWP) had the highest impact, whereas both ecotoxicity and human toxicity had least from this study.
显示更多 [+] 显示较少 [-]Evaluation of graphenic and graphitic materials on the adsorption of Triton X-100 from aqueous solution 全文
2021
Presently, graphenic nanomaterials are being studied as candidates for wastewater pollutant removal. In this study, two graphite oxides produced from natural graphite with different grain sizes (325 and 10 mesh), their respective reduced graphene oxides and one reduced graphene oxide with nitrogen functional groups were synthesized and tested to remove a surfactant model substrate, Triton X-100, from an aqueous solution. Kinetic experiments were carried out and adjusted to pseudo-first order equation, pseudo-second order equation, Elovich, Chain-Clayton and intra-particle diffusion models. Reduced graphene oxides displayed an instantaneous adsorption due to their accessible and hydrophobic surfaces, while graphite oxides hindered the TX100 adsorption rate due to their highly superficial oxygen content. Results from the adsorption isotherms showed that the Sips model perfectly described the TX100 adsorption behavior of these materials. Higher adsorption capacities were developed with reduced graphene oxides, being maximum for the material produced from the lower graphite grain size (qₑ = 3.55·10⁻⁶ mol/m²), which could be explained by a higher surface area (600 m²/g), a lower amount of superficial oxygen (O/C = 0.04) and a more defected structure (ID/IG = 0.85). Additionally, three commercial high surface area graphites in the range of 100–500 m²/g were evaluated for comparison purposes. In this case, better adsorption results were obtained with a more graphitic material, HSAG100 (qₑ = 1.72·10⁻⁶ mol/m²). However, the best experimental results of this study were obtained using synthesized graphenic materials.
显示更多 [+] 显示较少 [-]Assessing natural recovery from contaminants in a river using sediment chemistry and toxicity from different depth ranges 全文
2021
To determine whether natural recovery was occurring in a depositional area of the St. Marys River (Ontario, Canada) known as East Bellevue Marine Park (EBMP), sediment was collected from two depth ranges, 0–5 cm and 0–10 cm, and subjected to a series of laboratory toxicity tests and chemical analysis. Toxicological responses (survival, growth, reproduction, development) of four benthic invertebrates and the fathead minnow were compared at test vs. reference sites using univariate and multivariate (ordination) techniques. Temporal trends in sediment chemistry and invertebrate toxicity were examined with time series data from 2008 through to 2018. Polycyclic aromatic hydrocarbons (PAHs; ≤ 37 mg/kg) and petroleum hydrocarbons (PHCs; ≤ 6266 mg/kg) were elevated in EBMP compared to reference sites (PAHs, ≤ 1.6 mg/kg; PHCs ≤ 180 mg/kg). Comparatively, the 0–5 cm sediment layer had lower concentrations of all contaminants than the 0–10 cm layer at three of four test sites. Over time, contaminant concentrations have mostly remained stable or have decreased. There were no significant differences in survival, growth, or development of the larval fish in EBMP compared to the upstream reference sites, and no differences between sampling depths. However, most EBMP sediments were toxic to invertebrates, driven by reduced reproduction by the worm Tubifex and reduced survival by the amphipod Hyalella. Among habitat variables, a combination of different classes of compounds based on ordination scores (PHCs, oil and grease, metals) was most strongly correlated to toxicological response. There was little to no difference in toxicity between sampling depths based on integrated endpoint response; however, individual endpoints showed mostly greater toxicity from exposure to the 0–10 cm layer. Over time, toxicity has mostly remained stable or showed improvement. These results provided some positive indications that gradual natural recovery is occurring in EBMP.
显示更多 [+] 显示较少 [-]The influence of nutrient loading on methylmercury availability in Long Island estuaries 全文
2021
Estuaries provide critical habitat for food webs supporting fish and shellfish consumed by humans, but estuarine ecosystem health has been threatened by increases in nitrogen loading as well as inputs of the neurotoxin, mercury (Hg), which biomagnifies in food webs and poses risk to humans and wildlife. In this study, the effects of nutrient loading on the fate of Hg in shallow coastal estuaries were examined to evaluate if their interaction enhances or reduces Hg bioavailability in sediments, the water column, and concentrations in lower trophic level fish (Fundulus heteroclitus and Menidia menidia). Multiple sites were sampled within two human impacted coastal lagoons, Great South Bay (GSB) and Jamaica Bay (JB), on the southern coast of Long Island, NY, United States of America (U.S.A.). Carbon (C), nitrogen (N), sulfur (S), Hg, and methylmercury (MeHg) were measured in surface sediments and the water column, and total Hg (THg) was measured in two species of forage fish. Minimal differences were found in dissolved and particulate Hg, dissolved organic carbon (DOC), and salinity between the two bays. Across lagoons, concentrations of chlorophyll-a were correlated with total suspended solids (TSS), and water column THg and MeHg was largely associated with the particulate fraction. Methylmercury concentrations in particulates decreased with increasing TSS and chlorophyll-a, evidence of biomass dilution of MeHg with increasing productivity at the base of the food chain. Water column Hg was associated with THg concentrations in Atlantic silversides, while mummichog THg concentrations were related to sediment concentrations, reflecting their different feeding strategies. Finally, higher nutrient loading (lower C:N in sediments) while related to lower particulate concentrations coincided with higher bioaccumulation factors (BAF) for Hg in both fish species. Thus, in shallow coastal lagoons, increased nutrient loading resulted in decreased Hg concentrations at the base of the food web but resulted in greater bioaccumulation of Hg to fish relative to its availability in algal food.
显示更多 [+] 显示较少 [-]The effects of pulse exposures of metal toxicants on different life stages of the tropical copepod Acartia sinjiensis 全文
2021
Stone, Sarah | McKnight, Kitty | Legendre, Laura | Koppel, Darren J. | Binet, Monique T. | Simpson, Stuart L. | Jolley, Dianne F.
Effluent discharges can potentially result in high concentrations of metals entering aquatic environments for short durations, ranging from a few hours to days. The environmental risks of such exposures are challenging to accurately assess. Risk assessment tools for effluent discharges include comparison of toxicant concentrations with guideline values and the use of direct toxicity assessments, both of which were designed to assess continuous, rather than pulse, contaminant exposures. In this study, a chronic pulse-exposure toxicity test was developed using the tropical euryhaline calanoid copepod Acartia sinjiensis. This copepod has a rapid life cycle and is highly sensitive to metal contaminants, with 50% effect concentrations (chronic EC50) for larval development of 1.7, 8.6 and 0.7 μg L⁻¹ for copper, nickel and zinc, respectively. The toxicities of copper and nickel were assessed as a continuous exposure (78 h) and as pulses (3, 6 and 18 h) initiated at varying life stages, from egg to copepodite, and measured larval development over 78 h. Generally, 24-h old nauplii were more sensitive or of similar sensitivity to copper and nickel pulses than 48-h old nauplii. The 78-h test duration enabled observations of chronic effects following pulse exposures, which frequently occurred in the absence of acute effects. The EC50 values for pulse exposures were higher than those of continuous exposure by up to approximately 16-fold and 15-fold for copper and nickel, respectively. When metal-pulse exposure concentrations were expressed using the time-weighted averaged concentration (TAC), resultant concentration response curves were similar to those in continuous exposures to the same metal, suggesting that thresholds based on continuous exposures were also protective for pulse exposures to these metals. This research improves our understanding of the toxicity of pulse contaminant exposures and assists with developing improved approaches to for the risk assessment and regulation of short-term contaminant discharges.
显示更多 [+] 显示较少 [-]From mine to mind and mobiles – Lithium contamination and its risk management 全文
2021
Bolan, Nanthi | Hoang, Son A. | Tanveer, Mohsin | Wang, Lei | Bolan, Shiv | Sooriyakumar, Prasanthi | Robinson, Brett | Wijesekara, Hasintha | Wijesooriya, Madhuni | Keerthanan, S. | Vithanage, Meththika | Markert, Bernd | Fränzle, Stefan | Wünschmann, Simone | Sarkar, Binoy | Vinu, Ajayan | Kirkham, M.B. | Siddique, Kadambot H.M. | Rinklebe, Jörg
With the ever-increasing demand for lithium (Li) for portable energy storage devices, there is a global concern associated with environmental contamination of Li, via the production, use, and disposal of Li-containing products, including mobile phones and mood-stabilizing drugs. While geogenic Li is sparingly soluble, Li added to soil is one of the most mobile cations in soil, which can leach to groundwater and reach surface water through runoff. Lithium is readily taken up by plants and has relatively high plant accumulation coefficient, albeit the underlying mechanisms have not been well described. Therefore, soil contamination with Li could reach the food chain due to its mobility in surface- and ground-waters and uptake into plants. High environmental Li levels adversely affect the health of humans, animals, and plants. Lithium toxicity can be considerably managed through various remediation approaches such as immobilization using clay-like amendments and/or chelate-enhanced phytoremediation. This review integrates fundamental aspects of Li distribution and behaviour in terrestrial and aquatic environments in an effort to efficiently remediate Li-contaminated ecosystems. As research to date has not provided a clear picture of how the increased production and disposal of Li-based products adversely impact human and ecosystem health, there is an urgent need for further studies on this field.
显示更多 [+] 显示较少 [-]Phenotypic and transcriptomic changes in the corneal epithelium following exposure to cigarette smoke 全文
2021
Jin, Mengyi | Wang, Yanzi | An, Xiaoya | Kang, Honghua | Wang, Yixin | Wang, Guoliang | Gao, Yang | Wu, Shuiping | Reinach, Peter S. | Liu, Zuguo | Xue, Yuhua | Li, Cheng
Cigarette smoke extract (CSE), a complex mixture of compounds, contributes to a range of eye diseases; however, the underlying pathophysiological responses to tobacco smoke remain ambiguous. The purpose of the present study was to evaluate the cigarette smoke-induced phenotypic and transcriptomic changes in the corneal epithelium with a view to elucidating the likely underlying mechanism. Accordingly, for the first time, we characterized the genome-wide effects of CSE on the corneal epithelium. The ocular surface of the mice in the experimental groups was exposed to CSE for 1 h per day for a period of one week, while mice in the control group were exposed to preservative-free artificial tears. Corneal fluorescein staining, in vivo confocal microscopy and scanning electron microscopy were performed to examine the corneal ultrastructure. Transcriptome sequencing and bioinformatics analysis were performed followed by RT-qPCR to validate gene expression changes. The results indicate that CSE exposure disrupted the structural integrity of the superficial epithelium, decreased the density of microvilli, and compromised the corneal epithelial barrier intactness. RNA-seq revealed 667 differentially expressed genes, and functional analysis highlighted the enhancement of several biological processes such as antioxidant activity and the response to oxidative stress. Moreover, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that glutathione metabolism and drug metabolism cytochrome P450 were the most relevant pathways contributing to the effects of CSE on the corneal epithelium. Protein–protein interaction (PPI) network analysis illustrated that GCLC, NQO1, and HMOX1 were the most relevant nodes. In conclusion, the present study indicates that CSE exposure induces changes in the phenotype and genotype of the corneal epithelium. The antioxidant response element is essential for counteracting the effects of cigarette smoke on this tissue layer. These results shed novel insights into how cigarette smoke damages this ocular surface.
显示更多 [+] 显示较少 [-]Urinary phthalate metabolite concentrations, oxidative stress and thyroid function biomarkers among patients with thyroid nodules 全文
2021
Zhang, Min | Deng, Yan-Ling | Liu, Chong | Chen, Pan-Pan | Luo, Qiong | Miao, Yu | Cui, Fei-Peng | Wang, Long-Qiang | Jiang, Ming | Zeng, Qiang
Prior human studies have explored effects of phthalate exposures on thyroid function, but the underlying biological mechanisms remain poorly unclear. We aimed to explore the associations between phthalate exposures and thyroid function among a potentially susceptible population such as patients with thyroid nodules, and further to assess the mediating role of oxidative stress. We measured eight phthalate metabolites, three oxidative stress biomarkers [8-hydroxy-2-deoxyguanosine (8-OHdG), 8-iso-prostaglandin F₂α (8-isoPGF₂α) and 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA)] in urine and three thyroid function biomarkers [thyroid-stimulating hormone (TSH), free triiodothyronine (FT3) and free thyroxine (FT4)] in serum among 214 patients with thyroid nodules. Multivariate regression models were applied to assess the associations among urinary phthalate metabolites, oxidative stress and thyroid function biomarkers. The potential mediating role of oxidative stress was explored by mediation analysis. We observed that multiple urinary phthalate metabolites were associated with altered FT4 and increased oxidative stress biomarkers (all FDR-adjusted P ≤ 0.05). Meanwhile, we found that 8-isoPGF₂α was negatively associated with FT3/FT4 among patients with benign thyroid nodules (FDR-adjusted P = 0.08). The mediation analysis indicated that 8-isoPGF₂α mediated the associations of urinary MEHHP and %MEHP with FT3/FT4, with 55.6% and 32.6% proportion of the mediating effects, respectively. Our data suggest that lipid peroxidation may be an intermediate mechanism involved in the effects of certain phthalate exposures on altered thyroid function among patients with benign thyroid nodules.
显示更多 [+] 显示较少 [-]Effect of soil sulfamethoxazole on strawberry (Fragaria ananassa): Growth, health risks and silicon mitigation 全文
2021
Lv, Yao | Li, Yanyan | Liu, Xiaohui | Xu, Kun
The negative impact of antibiotic pollution on the agricultural system and human health is a hot issue in the world. However, little information is available on the antibiotics toxicity mechanism and the role of silicon (Si) to alleviate the antibiotics toxicity. In this study, strawberry (Fragaria ananassa) showed excitatory response to low-dose SMZ (1 mg L⁻¹), but strawberry root and photosynthetic efficiency were damaged under high level. When SMZ level exceeded 10 mg L⁻¹, H₂0₂, O₂⁻, MDA and relative conductivity increased, while SOD and CAT activities first increased and then decreased. SMZ accumulated more in roots and fruits, but less in stems, and the accumulation increased with the increase of SMZ-dose. Under 1 mg L⁻¹ SMZ, the SMZ accumulation in fruits was 110.54 μg kg⁻¹, which exceeded the maximum residue limit. SMZ can induce the expression of sul1, sul2 and intI1, and intI1 had the highest abundance. Exogenous application of Si alleviated the toxicity of SMZ, which is mainly related to the degradation of SMZ in soil and the reduction of SMZ absorption by strawberry. In addition, Si relieved root damage, promoted the increase of photosynthetic efficiency, and improved the antioxidant system to resist SMZ toxicity.
显示更多 [+] 显示较少 [-]Use of thermally modified waste concrete powder for removal of Pb (II) from wastewater: Effects and mechanism 全文
2021
Ma, Zihan | Xue, Runze | Li, Jiang-shan | Zhao, Yaqin | Xue, Qiang | Chen, Zhen | Wang, Qiming | Poon, C. S. (Chi-sun)
Exploring effective uses of waste concrete powder (WCP), produced from recycling of construction & demolition waste is beneficial to the environment and sustainable development. In this study, WCP was first treated thermally to enhance the ability to remove Pb (II) from aqueous solutions. The experimental results revealed that the thermal treatment could enhance adsorption capacity due to modification of calcium bonding and pore structure of WCP. Preparation parameters such as temperature, particle size, and water-cement ratio were investigated to obtain the optimal operational conditions. Batch adsorption experiments were performed to explore influence factors of pH (1.00–6.00), ionic strength (0.05–2 mol/L), dosage (2–50 g/L), and temperature (25–45 °C). The pseudo-second-order kinetics model could adequately describe the adsorption process, and the Langmuir model was capable to predict the isotherm data well in the low concentration region (C₀ < 500 mg/L). The maximum uptake capacity for Pb (II) calculated by Langmuir model at 25, 35 and 45 °C were 46.02, 38.58 and 30.01 mg/g respectively, and the removal rate of Pb (II) was 92.96% at a dosage of 50 g/L (C₀ = 1000 mg/L). Precipitation, ion exchange, and surface complexation were identified to be the main mechanisms of Pb (II) adsorption through microscopic investigation by SEM-EDX, XRD, FTIR, XPS, and BET inspections. The study confirms that the WCP after thermal modification, can be selected as a promising adsorbent for the high performance and eco-friendliness.
显示更多 [+] 显示较少 [-]