细化搜索
结果 2101-2110 的 4,936
Removal of Pesticides with Endocrine Disruptor Activity in Wastewater Effluent by Solar Heterogeneous Photocatalysis Using ZnO/Na2S2O8 全文
2019
Vela, Nuria | Calín, May | Yáñez-Gascón, María J. | el Aatik, Abderrazak | Garrido, Isabel | Pérez-Lucas, Gabriel | Fenoll, José | Navarro, Simón
The solar photocatalysis has received increasing attention in the last years due to its great potential as eco-friendly technology to detoxify wastewater polluted with estrogenic and/or androgenic chemicals. In this context, this study aims to demonstrate the photocatalyzed degradation of two fungicides (vinclozoline and fenarimol) and four insecticides (malathion, fenotrothion, quinalphos, and dimethoate) all of them with endocrine-disrupting activity, in a wastewater effluent under natural sunlight and pilot plant scale. For this, we have combined hydroxyl radical (HO•)- and sulfate radical (SO₄●⁻)-based advanced oxidation processes (AOPs) by using of ZnO as photocatalyst and Na₂S₂O₈ as oxidant, respectively. Previously, catalyst loading, effect of electron acceptor, and pH conditions were optimized using a lab photoreactor under artificial light. As a result, 200 mg L⁻¹ of ZnO and 250 mg L⁻¹ of Na₂S₂O₈ were used in the further experiment at pilot plant scale at pH around 7. The results show that the use of the tandem ZnO/Na₂S₂O₈ strongly enhances the reaction rate of the studied pesticides as compared with the photolytic test. All pesticides followed an apparent first-order degradation curve. The necessary time for 90% degradation (DT₉₀) under sunlight irradiation ranged from 26 to 1000 min (2–75 min as normalized illumination time, t₃₀W) for malathion and fenarimol, respectively. At the end of the lighting, the remaining percentage of dissolved organic carbon (DOC) was up to 92% lower than its initial content and toxicity (Vibrio fischeri) decreased from 65% of inhibition to an acceptable value of 12% at the end of the treatment. A weak increase in the electrical conductivity (EC) was observed due to the mineralization process. The findings confirm the efficacy of the treatment to remove pesticides from wastewater using natural sunlight as renewable energy source, mainly in sunny areas as Mediterranean basin.
显示更多 [+] 显示较少 [-]Emission of nitrous oxide from plain multi-ditch system and its impact factors 全文
2019
Deng, Ouping | Li, Xi | Xiao, Yinlong | Zhang, Shirong | Deng, Liangji | Lan, Ting | Luo, Ling | Gao, Xuesong | Zhou, Wei | Zhang, Jing | Ling, Jing
Multi-level ditch area is a major component of the hydrographic net of plain area, China. Given the high concentration of nitrogen (N) in the surface water and vigorous biogeochemical interactions, ditch is likely to be the hot spots of N₂O emission. However, N₂O emission flux and emission factor (EF₅ᵣ) of multi-level ditches have not been determined. To address this knowledge gap, a 1-year field work in three ditches with different levels in Chengdu Plain was conducted. It is found that the annual flux of N₂O emission and EF₅ᵣ was higher in the lateral (0.0020 and 83.94 μg m⁻² h⁻¹) and field ditches (0.0019 and 110.75 μg m⁻² h⁻¹) than in the branch ditch (0.0016 and 46.38 μg m⁻² h⁻¹, P < 0.05). It is found that parameters of groundwater level, discharge, precipitation, and NH₄⁺ were the primary factors, and these parameters can model the N₂O flux well. Furthermore, the content of NH₄⁺ in the surface water of ditches presented better correlation with the emission of N₂O than the content of NO₃⁻. Therefore, controlling NH₄⁺ emission and lessening fertilizer usage in summer may be key solutions for indirect reduction of N₂O in Chengdu Plain.
显示更多 [+] 显示较少 [-]Modification of the Relative Abundance of Constituents Dissolved in Drinking Water Caused by Organic Pollution: a Case of the Toluca Valley, Mexico 全文
2019
de Oca, Reyna María Guadalupe Fonseca-Montes | Ramos Leal, Alfredo | Solache-Ríos, Marcos José | Martínez-Miranda, Verónica | Fuentes Rivas, Rosa María
Drinking water contains geogenic elements to which human beings are exposed; in the long term, these elements can be either harmful (As) or beneficial (Mg and Ca) to health. The composition and relative abundance of the constituents in groundwaters are conditioned by the balance between dissolution, precipitation, and oxide-reduction processes also by the nature and spatial arrangement of the materials interacting with the water. In recent decades, human activities and changes in the use of land have led to the accumulation of organic materials and their degradation into nitrogen and phosphorus, which has resulted in a change of the physicochemical composition and quality of drinking water. The main target of the study was to evaluate the effect of contamination by nitrogen and phosphate organic matter on the physicochemical composition of water used for human consumption. The study was conducted in the Toluca Valley aquifer. The determination of parameters in situ and analysis in the laboratory of physicochemical parameters revealed the presence of NO₃⁻ (1.0–119 mg L⁻¹), SO₄²⁻ (6.81–24.70 mg L⁻¹), PO₄³⁻ (2.50–32.20 mg L⁻¹), and N-NH₄⁺ (0–5.40 mg L⁻¹), which suggested the presence of punctual anthropogenic contamination; this was confirmed using 3D fluorescence to identify the presence of organic matter. The results of Na⁺ (15.75 mg L⁻¹), K⁺ (2.66 mg L⁻¹), Ca²⁺ (8.73 mg L⁻¹), and Mg²⁺ (8.01 mg L⁻¹) using the ICP technique showed that the water supplied in the area has a low mineral content. Correlation between P and cations Ca²⁺ (0.844) > Na⁺ (0.720) > Mg²⁺ (0.694) > K⁺ (0.60) indicates that anthropic contamination affects the relative abundance of dissolved constituents in water. The scarcity of essential nutrients in water impacts on public health; it has been reported that deficiency of Ca²⁺ and Mg² implies a wide variety of clinical conditions, mainly in the development of cardiovascular diseases.
显示更多 [+] 显示较少 [-]Study on Mercury Methylation in the Amazonian Rivers in Flooded Areas for Hydroelectric Use 全文
2019
Gomes, Vinicius M. | Santos, Ademir dos | Zara, Luiz F. | Ramos, Dayana D. | Forti, Juliane C. | Ramos, Diovany D. | Santos, Felipe A.
This study aimed to estimate in laboratory the temporal production of methylmercury during the filling of reservoirs of hydropower plants and to correlate it to the ecosystem of different locations in northern Brazil: Jirau hydropower plant in the Madeira River in the state of Rondônia (white waters—under construction), Cana Brava hydropower plant in the Tocantins River in the state of Goiás (clear waters—completed), and the Negro River in the Amazon (black waters—comparative). After collecting water, soil, and sediment samples in the regions mentioned, a microcosm was created to reproduce the conditions close to those found in nature. Water/soil/Hg⁰/Hg²⁺ and water/sediment/Hg⁰/Hg²⁺ were added to glass recipients. Next, methylmercury concentration was monitored by atomic fluorescence spectrometry, total organic carbon by TOC 5000A, and physical and chemical parameters such as pH, redox potential, and dissolved oxygen, for 25 days. The results obtained allow concluding that organic matter plays an important role, providing excess methyl groups to react with inorganic Hg and form organic Hg. The Negro River, which has higher contents of organic matter in its soil, water, and sediment, presented higher potential of mercury methylation in both experiments performed, followed by rivers Madeira and Tocantins.
显示更多 [+] 显示较少 [-]Life Cycle Comparison of Membrane Capacitive Deionization and Reverse Osmosis Membrane for Textile Wastewater Treatment 全文
2019
Cetinkaya, Afsin Y. | Bilgili, Levent
The reduced natural water sources on the one hand and the large amount of wastewater produced by the textile industry on the other hand lead to the requirement of an effective reuse of textile wastewater. In this study, the treatment of textile wastewater by the reverse osmosis membrane system and membrane capacitive deionization (MCDI) system has been investigated to improve the quality and the recovery rate of the effluent for reclamation. The maximum chemical oxygen demand (COD) removal efficiency obtained at 10 bar was 96.3% for BW30 reverse osmosis membrane. Diversified operating conditions, including working voltage and flow rate, were investigated systematically in the MCDI system which is an effective water purification technology. According to the obtained experimental results, the COD removal efficiency was thoroughly increased by rising the working voltage (from 0.2 to 1.2 V) and the flow rate (from 5 to 17.5 ml/min). The flow rate and the working voltage at which the COD from textile wastewater removal ratio was the highest were 10 ml/min and 1.2 V, respectively. A life cycle approach has also been implemented for the comparison of environmental impact assessment of the two desalination systems. In this study, a life cycle approach has been implemented for the comparison of environmental friendly impact assessment of the two desalination systems. It is concluded that MCDI system is much more environmental friendlier with 5641 times less values for damage assessment categories, on average.
显示更多 [+] 显示较少 [-]The relief effects of organic acids on Scirpus triqueter L. under pyrene–lead stress 全文
2019
Zhang, Xinying | Chen, Jing | Liu, Xiaoyan | Chen, Xueping | Liu, Lu | Niu, Yinghu | Wang, Rui
During phytoremediation of polycyclic aromatic hydrocarbons (PAHs) and heavy metals, the phytoremediation plants are often stressed by pollutants, which would reduce the efficiency of phytoremediation. The addition of organic acids from root exudates could alleviate the stress. In this study, three organic acids (citric acid, succinic acid, glutaric acid) were added to investigate the effects of organic acids on the stress response of Scirpus triqueter L. at two pyrene–lead concentrations. The activities of reactive oxygen species, malondialdehyde, plasma membrane H⁺-ATPase, and vacuolar H⁺-ATPase and PPase activity, as well as the activities of antioxidant enzymes (SOD, POD, and CAT) in Scirpus triqueter L. were determined. The addition of organic acids could effectively reduce the activities of reactive oxygen species, malondialdehyde, plasma membrane H⁺-ATPase, and vacuolar H⁺-ATPase and PPase activities. Under higher pollution, the damage of plant plasma membrane is more serious, but the addition of citric acid can alleviate this situation and even more effective than the relief under low pollution. The effect of citric acid was more significant than that of succinic acid and glutaric acid. These results demonstrated that organic acids could attenuate the stress of pyrene and lead to Scirpus triqueter L.
显示更多 [+] 显示较少 [-]Toxicological effects of toxic metals (cadmium and mercury) on blood and the thyroid gland and pharmacological intervention by vitamin C in rabbits 全文
2019
Khan, Rida | Tareen, Shaukat | Mumtaz, Shumaila | Andleeb, Saiqa | Ulhaq, Mazhar | T̤āhir, Ḥāfiz̤ Muḥammad | Khan, Muhammad Khalil Ahmad | Khan, Muhammad Adeeb | Shakir, Hafiz Abdullah
Cadmium and mercury are non-biodegradable toxic metals that may cause many detrimental effects to the thyroid gland and blood. Vitamin C has been found to be a significant chain-breaking antioxidant and enzyme co-factor against metal toxicity and thus make them less available for animals. The current study was performed to find the effect of individual metals (cadmium and mercury), their co-administration, and the ameliorative effects of vitamin C on some of the parameters that indicate oxidative stress and thyroid dysfunction. Cadmium chloride (1.5 mg/kg), mercuric chloride (1.2 mg/kg), and vitamin C (150 mg/kg of body weight) were orally administered to eight treatment groups of the rabbits (1. control; 2. Vit C; 3. CdCl₂; 4. HgCl₂; 5. Vit C + CdCl₂; 6. Vit C + HgCl₂; 7. CdCl₂ + HgCl₂, and 8. Vit C + CdCl₂ + HgCl₂). After the biometric measurements of all experimental rabbits, biochemical parameters viz. triidothyronine (T₃), thyroxine (T₄), thyroid-stimulating hormone (TSH), and triglycerides were measured using commercially available kits. The results exhibited significant decline (p < 0.05) in mean hemoglobin, corpuscular hemoglobin, packed cell volume, T₃ (0.4 ± 0.0 ng/ml), and T₄ (26.3 ± 1.6 ng/ml) concentration. While, TSH (0.23 ± 0.01 nmol/l) and triglyceride (4.42 ± 0.18 nmol/l) were significantly (p < 0.05) increased but chemo-treatment with Vit C reduces the effects of Cd, Hg, and their co-administration but not regained the values similar to those of controls. This indicates that Vit C had a shielding effect on the possible metal toxicity. The Cd and Hg also found to accumulate in vital organs when measured by atomic absorption spectrophotometer. The metal concentration trend was observed as follows: kidney > liver > heart > lungs. It was concluded that Cd and Hg are toxic and tended to bioaccumulate in different organs and their toxic action can be subdued by vitamin C in biological systems.
显示更多 [+] 显示较少 [-]Decomposition of Cameroon’s CO2 emissions from 2007 to 2014: an extended Kaya identity 全文
2019
Engo, Jean
To effectively combat global warming, an enormous reduction in CO₂ emissions is required. Cameroon, which is currently the largest emitter of CO₂ in the CEMAC subregion, has committed to reducing its greenhouse gas emissions by 32% by 2035. However, previous studies in Cameroon have only addressed the relationship between economic growth, energy consumption, and CO₂ emissions without estimating all causal relationships at the same time. Moreover, no study has yet decomposed this country’s CO₂ emissions to date. To fill these research gaps and further assess the determinants of these CO₂ emissions, an extended Kaya identity and the Logarithm Mean Divisia Index (LMDI I) have been applied in this paper to identify, quantify, and explain the main drivers of Cameroon’s CO₂ emissions from 2007 to 2014. Seven effects were measured and the main findings show that carbon intensity and the emission factor increased by 0.57% and 107.50% respectively. Regarding contributions to the increase of CO₂ emissions, the population effect was the most positive followed by the activity effect, whereas the energy intensity, the substitution of fossil fuels and the penetration of renewable energies have contributed to reduce the CO₂ emission. To enable Cameroon to not only achieve the goals of its vision but also develop a low-carbon economy, this paper provides some proposed avenues that should be considered by policymakers.
显示更多 [+] 显示较少 [-]Aminosilane-grafted spherical cellulose nanocrystal aerogel with high CO2 adsorption capacity 全文
2019
Zhang, Tianmeng | Zhang, Yang | Jiang, Hua | Wang, Xiaoyu
In this study, the cellulose nanocrystals (CNC) obtained by acid hydrolysis of microcrystalline cellulose (MCC) are customized by suspension to obtain a spherical CNC hydrogel. The N-(2-aminoethyl) (3-amino-propyl) methyldimethoxyansile (AEAPMDS) preparation was grafted to spherical CNC hydrogel using a water phase heat treatment. Finally, aerogel samples were obtained by tert-butanol replacement and freeze-drying. The test results confirmed that the aminosilane was grafted on CNC. Electron micrographs and N₂ sorption isotherms showed that the pores of the aerogel were partially blocked due to the introduction of AEAPMDS, and the specific surface area was decreased. Due to the presence of chemisorption, the amount of CO₂ adsorbed at a pressure of 3 bar by the modified aerogel (2.63 mmol/g) was greatly improved compared with the unmodified aerogel (0.26 mmol/g), and the adsorption results were fit well by the Langmuir model. Thus, our experiments provided the opportunity to develop a new CO₂ absorbent material.
显示更多 [+] 显示较少 [-]Gold Mine Impact on Soil Quality, Youga, Southern Burkina Faso, West Africa 全文
2019
Compaore, Wendkuuni Florentin | Dumoulin, Ann | Rousseau, Diederik P. L.
The present study aims to assess the impact of a gold mine located in the southeastern part of Burkina Faso on local soil quality. This information is needed in order to determine any health hazards and potential remediation strategies as the mining site is expected to be turned over to the local community after the closure of the mine. For the purpose, total minor and trace elements analysis as well as a sequential extraction were performed and results were interpreted using different methodologies: enrichment factor (EF), geoaccumulation index (Igeo) computed using two separate background samples, and comparison to selected national standard. The soil analysis revealed a moderate to significant soil EF and Igeo with hotspots located closer to the ore processing plant and on the east side of the site, with a maximum arsenic concentration of 286.55 ± 12.50 mg/kg. Sequential extraction revealed, however, that less than 2% of the arsenic is found in the exchangeable part. Cobalt and zinc are more distributed in the different fractions than arsenic. Geogenic and anthropogenic contributions were revealed by the study. Graphical Abstract .
显示更多 [+] 显示较少 [-]