细化搜索
结果 2151-2160 的 4,929
Impacts of suspended sediment and metal pollution from mining activities on riverine fish population—a review
2019
Affandi, Farhana Ahmad | Ishak, Mohd Yusoff
Mining activities are responsible for the elevated input levels of suspended sediment and hazardous metals into the riverine ecosystem. These have been shown to threaten the riverine fish populations and can even lead to localized population extinction. To date, research on the effects of mining activities on fish has been focused within metal contamination and bioaccumulation and its threat to human consumption, neglecting the effects of suspended sediment. This paper reviews the effects of suspended sediment and metal pollution on riverine ecosystem and fish population by examining the possibilities of genetic changes and population extinction. In addition, possible assessments and studies of the riverine fish population are discussed to cope with the risks from mining activities and fish population declines.
显示更多 [+] 显示较少 [-]Production and characterization of bio-mix fuel produced from the mixture of raw oil feedstock, and its effects on performance and emission analysis in DICI diesel engine
2019
Sharma, Vikas | Duraisamy, Ganesh
Bio-mix is a fuel derived from the raw mixture of different non-edible oils to enhance the saturation level. In this study, raw oil mixture was transesterified to form bio-mix methyl ester (BMME). Fuel properties of BMME was measured and results showed that saturated fatty acids (SFA), cetane number (CN), and oxidation stability (OS) were increased, whereas density, viscosity, HHV, flash point, iodine number, and acid number were decreased for BMME as compared to individual biodiesels. Brake specific energy consumption (BSEC) of BMME was higher than diesel fuel but similar to individual biodiesel, while brake thermal efficiency (BTE) was lower than diesel fuel but higher than the individual biodiesel. (NOₓ) and CO₂ emission of BMME was found lower (approximately 20%); meanwhile, smoke opacity and CO emission biodiesel increased compared to diesel fuel, whereas (HC) emission of BMME was lower at low load condition but it is increased at high load. Bio-mix fuel could be the good replacement of diesel fuel.
显示更多 [+] 显示较少 [-]Remediation of cobalt-polluted soil after application of selected substances and using oat (Avena sativa L.)
2019
Kosiorek, Milena | Wyszkowski, Mirosław
The aim of the study was to determine the effectiveness of soil application of manure, clay, charcoal, zeolite, and calcium oxide in remediation of soil polluted with cobalt (0, 20, 40, 80, 160, 320 mg Co kg⁻¹ of soil). The following were determined: weight of harvested plants as well as the content of cobalt in grain, straw, and roots of oat. In addition, tolerance index (Ti), cobalt bioconcentration (BCF), translocation (TF), and transfer (TFr) coefficients were derived. In the series without amendments, the increasing doses of cobalt had a significant effect by decreasing the yields of oat grain and straw and the mass of its roots. Also, lower tolerance index values were noted in the objects polluted with cobalt, especially with its highest dose. The application of manure had the strongest effect on increasing the mass of particular organs of the test plant, while the application of charcoal led to a significant decrease in this respect. The application of all substances to the soil, and especially manure and calcium oxide, resulted in higher tolerance index Ti values. The growing contamination of soil with cobalt caused a significant increase in the content of this element in oat and in the values of the translocation coefficient, in contrast to the effects noted with respect to the bioconcentration and transfer coefficients. All the substances applied to soil reduced the content of cobalt and its bioconcentration in oat straw, in opposition to grain and roots, limited its translocation, but elevated the transfer of this element from soil to plants. Soil contamination with cobalt promoted the accumulation of lead and copper in grain, cadmium, lead, nickel, zinc, manganese, and iron in straw, as well as cadmium, nickel, zinc, and manganese in oat roots. As the cobalt dose increased, the content of other trace elements in oat organs either decreased or did not show any unambiguous changes. Of all the tested substances, the strongest influence on the content of trace elements was produced by calcium oxide in straw and roots and by zeolite in roots, whereas the weakest effect was generated by manure in oat grain. Oat is not the best plant for phytoremediation of soils contaminated with cobalt.
显示更多 [+] 显示较少 [-]Removal of Pesticides with Endocrine Disruptor Activity in Wastewater Effluent by Solar Heterogeneous Photocatalysis Using ZnO/Na2S2O8
2019
Vela, Nuria | Calín, May | Yáñez-Gascón, María J. | el Aatik, Abderrazak | Garrido, Isabel | Pérez-Lucas, Gabriel | Fenoll, José | Navarro, Simón
The solar photocatalysis has received increasing attention in the last years due to its great potential as eco-friendly technology to detoxify wastewater polluted with estrogenic and/or androgenic chemicals. In this context, this study aims to demonstrate the photocatalyzed degradation of two fungicides (vinclozoline and fenarimol) and four insecticides (malathion, fenotrothion, quinalphos, and dimethoate) all of them with endocrine-disrupting activity, in a wastewater effluent under natural sunlight and pilot plant scale. For this, we have combined hydroxyl radical (HO•)- and sulfate radical (SO₄●⁻)-based advanced oxidation processes (AOPs) by using of ZnO as photocatalyst and Na₂S₂O₈ as oxidant, respectively. Previously, catalyst loading, effect of electron acceptor, and pH conditions were optimized using a lab photoreactor under artificial light. As a result, 200 mg L⁻¹ of ZnO and 250 mg L⁻¹ of Na₂S₂O₈ were used in the further experiment at pilot plant scale at pH around 7. The results show that the use of the tandem ZnO/Na₂S₂O₈ strongly enhances the reaction rate of the studied pesticides as compared with the photolytic test. All pesticides followed an apparent first-order degradation curve. The necessary time for 90% degradation (DT₉₀) under sunlight irradiation ranged from 26 to 1000 min (2–75 min as normalized illumination time, t₃₀W) for malathion and fenarimol, respectively. At the end of the lighting, the remaining percentage of dissolved organic carbon (DOC) was up to 92% lower than its initial content and toxicity (Vibrio fischeri) decreased from 65% of inhibition to an acceptable value of 12% at the end of the treatment. A weak increase in the electrical conductivity (EC) was observed due to the mineralization process. The findings confirm the efficacy of the treatment to remove pesticides from wastewater using natural sunlight as renewable energy source, mainly in sunny areas as Mediterranean basin.
显示更多 [+] 显示较少 [-]Single and combined effects of microplastics and roxithromycin on Daphnia magna
2019
Zhang, Peng | Yan, Zhenhua | Lü, Guanghua | Ji, Yong
There is a rising concern about the pollution of microplastics (plastic particles < 5 mm) in water due to their physicochemical properties, especially their interaction with organic contaminants; however, such knowledge is still limited. The mass production and consumption of medication for the treatment of infectious diseases in human and animals have led to the ubiquity of antibiotics in the environment. We studied the single and joint effects of microplastics (1-μm and 10-μm polystyrene particles, PS) and roxithromycin (ROX) on Daphnia magna through the acute and sublethal toxicity tests. The 48-h median effective concentration (EC₅₀) of 1-μm and 10-μm PS to D. magna was 66.97 mg/L and 199.94 mg/L, respectively, while the value of ROX was 20.28 mg/L. Malondialdehyde (MDA) levels and the activities of four enzymatic biomarkers, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione S-transferase (GST), were further detected to assess the oxidative stress caused in D. magna caused. The results showed that 48-h exposure to PS (0.1 mg/L) or ROX (0.01 mg/L) alone activated the activities of CAT and GST and MDA levels. When compared with the ROX alone, the responses of GPx and MDA in D. magna co-exposed to 1-μm PS were significantly decreased, while co-exposure to 10-μm PS significantly decreased the responses of GST and MDA. Furthermore, the integrated biomarker response version 2 (IBRv2) analysis revealed that co-exposure to 1-μm PS and ROX led to the strongest biological responses in D. magna. Our findings underlined that microplastics should be a concern when they interact with the co-existence of pollutants in the aquatic environment.
显示更多 [+] 显示较少 [-]Rapid Quantification of Escherichia coli in Potable Water by Fluorescence In Situ Hybridization Performed in Liquid (liq-FISH) and a Microfluidic System
2019
Yamaguchi, Nobuyasu | Goto, Satoko
Specific and sensitive detection of fecal microbes in potable water is essential for ensuring the safety of water supplies. To this end, because conventional culture-based methods typically require at least 24 h to detect fecal bacteria, rapid and simple microbiological detection methods are considered necessary. Fluorescence in situ hybridization (FISH) is a useful culture-independent technique for selectively and rapidly detecting target bacteria using fluorescently labeled probes that hybridize with intracellular ribosomal RNA. However, typical FISH assays are relatively complicated to perform, making FISH unsuitable for routine tests. In this study, we developed an “in liquid-fluorescence in situ hybridization” assay (liq-FISH) to enumerate Escherichia coli cells, indicator of fecal contamination, rapidly. The assay performs the entire in situ hybridization procedure in liquid and requires only two simple steps—addition of fixative followed by the addition of fluorescent probe. Important processes in FISH, fixation and hybridization, were optimized, and then specificity of the optimized liq-FISH procedure was confirmed by E. coli and other eight gammaproteobacterial species. The findings showed that only E. coli cells fluoresced under a fluorescence microscope; however, filtration process is required to observe and count hybridized cells by fluorescence microscopy. For simple and semi-automated counting following liq-FISH, our developed microscope-based microfluidic counting system was applied. Hybridized cells were injected into a microfluidic device, which permitted the detection and enumeration of E. coli cells flowing through the microchannel (width: 100 μm, depth: 15 μm). The obtained results were compared with those obtained by conventional fluorescence microscopy, and results showed the similarity (r = 0.908). E. coli cells could be counted within 5 h (filtration for concentration of low numbers of E. coli cells (if necessary): 0.5 h, fixation of cells: 2 h, in situ hybridization: 2 h, counting: 0.5 h), and this method would be useful for rapidly quantifying E. coli cells in potable water.
显示更多 [+] 显示较少 [-]Fine-resolution mapping of particulate matter concentration in urban areas and population exposure analysis via dispersion modeling: a study in Daejeon, South Korea
2019
Son, Seungwoo | Kim, Dongwoo | Kang, Youngeun | Yoon, Jeongho | Jeon, Hyungjin | Kim, Seogcheol | Cho, Kyunghak | Yu, Jaejin
To deliver accurate particulate matter information to citizens, a detailed particulate matter dispersion model including factors such as land use and meteorological information was developed and used to create particulate matter concentration distribution maps for Daejeon Metropolitan City (South Korea). The results showed differences from existing particulate matter concentration distribution maps created using established methods. For PM2.5, approximately 3600 concentration maps were constructed. Taking a map as an example, according to existing methods, the PM2.5 concentration was “good” in 56% and “moderate” in 44% of areas. However, according to our modeling, the PM2.5 concentration was good in 31%, moderate in 26%, “unhealthy” in 28%, and “very unhealthy” in 15% of areas. Furthermore, the existing methods indicated that no portion of the population was exposed to poor particulate matter concentrations, while the proposed model found that over 170,000 people were exposed to such concentrations. These results will contribute to sustainable urban and environmental planning.
显示更多 [+] 显示较少 [-]Decomposition of 2-Propanol in the Liquid Phase Using a Photocatalyst Immobilized on Nonwoven Fabric and Ozone Microbubbles
2019
Yasui, Fumio | Sekiguchi, Kazuhiko | Tamura, Hajime
2-Propanol (IPA) is a highly water-soluble volatile organic compound that is used in the cleaning and drying processes during semiconductor fabrication. IPA is also used as a disinfectant in the pharmacy field. Water scrubber processing is one of the methods used for IPA collection. However, water scrubbing requires wastewater treatment. In this study, we propose a decomposition system for IPA in the liquid phase based on a TiO₂ photocatalyst immobilized on nonwoven fabric (TiO₂ nonwoven fabric) and ozone microbubbles (MBs). The thick nonwoven fabric with immobilized TiO₂ exhibits a higher IPA removal rate than that exhibited by the pleated fabric. IPA decomposes to produce acetone, which can be further decomposed and possibly undergo mineralization. The entire water tank can be supplied with ozone by introducing the MB-forming ozone, which considerably affects the decomposition of IPA. The efficient decomposition of IPA was achieved by combining ozone MBs, TiO₂ nonwoven fabric, and ultraviolet irradiation, presumably because the photocatalyst promotes the mineralization of the decomposition product. Thus, the OH radicals from the O₃ MBs competitively captured in the decomposition product strongly promote the decomposition of IPA, enhancing the IPA decomposition rate.
显示更多 [+] 显示较少 [-]Modification of the Relative Abundance of Constituents Dissolved in Drinking Water Caused by Organic Pollution: a Case of the Toluca Valley, Mexico
2019
de Oca, Reyna María Guadalupe Fonseca-Montes | Ramos Leal, Alfredo | Solache-Ríos, Marcos José | Martínez-Miranda, Verónica | Fuentes Rivas, Rosa María
Drinking water contains geogenic elements to which human beings are exposed; in the long term, these elements can be either harmful (As) or beneficial (Mg and Ca) to health. The composition and relative abundance of the constituents in groundwaters are conditioned by the balance between dissolution, precipitation, and oxide-reduction processes also by the nature and spatial arrangement of the materials interacting with the water. In recent decades, human activities and changes in the use of land have led to the accumulation of organic materials and their degradation into nitrogen and phosphorus, which has resulted in a change of the physicochemical composition and quality of drinking water. The main target of the study was to evaluate the effect of contamination by nitrogen and phosphate organic matter on the physicochemical composition of water used for human consumption. The study was conducted in the Toluca Valley aquifer. The determination of parameters in situ and analysis in the laboratory of physicochemical parameters revealed the presence of NO₃⁻ (1.0–119 mg L⁻¹), SO₄²⁻ (6.81–24.70 mg L⁻¹), PO₄³⁻ (2.50–32.20 mg L⁻¹), and N-NH₄⁺ (0–5.40 mg L⁻¹), which suggested the presence of punctual anthropogenic contamination; this was confirmed using 3D fluorescence to identify the presence of organic matter. The results of Na⁺ (15.75 mg L⁻¹), K⁺ (2.66 mg L⁻¹), Ca²⁺ (8.73 mg L⁻¹), and Mg²⁺ (8.01 mg L⁻¹) using the ICP technique showed that the water supplied in the area has a low mineral content. Correlation between P and cations Ca²⁺ (0.844) > Na⁺ (0.720) > Mg²⁺ (0.694) > K⁺ (0.60) indicates that anthropic contamination affects the relative abundance of dissolved constituents in water. The scarcity of essential nutrients in water impacts on public health; it has been reported that deficiency of Ca²⁺ and Mg² implies a wide variety of clinical conditions, mainly in the development of cardiovascular diseases.
显示更多 [+] 显示较少 [-]Adsorption of As(V) from Water over a Hydroxyl-Alumina Modified Paddy Husk Ash Surface and Its Sludge Immobilization
2019
Sarmah, Susmita | Saikia, Jitu | Phukan, Ankana | Lochan Goswamee, Rajib
Arsenic (As) is considered as one of the most hazardous elements found in the groundwater. It is present in water in both arsenate (As(V)) and arsenite (As(III)) forms. On exposure for a considerable length of time to water having As concentration above the maximum permissible limit of 10 μg/L, there is a serious threat of developing various health problems including cancer. There is frequent reporting about the development of different newer methods for the removal of arsenic from water. In this present approach, a low-cost product namely modified paddy husk ash (PHA) was used as an adsorbent for the adsorption of arsenic from water. The adsorbent is important from the point of its easy availability in the tropical paddy producing countries. For improved removal efficiency and disposal of spent adsorbent, the surface of the PHA was activated with an aluminum oligomeric solution called as hydroxyl-alumina. To understand the process, various techniques such as XRD, SEM–EDS, particle size determination, and zeta potential measurements were used and the effects like variation of adsorbent dose, pH, initial arsenic concentration, and contact time were studied. The Freundlich adsorption isotherm and pseudo-second-order kinetic models were found to be the best fitted adsorption isotherm and kinetic data models respectively thereby confirming the adsorption as a multilayer chemisorption process. Finally, the issue of disposal of the spent sludge through the successful formation of cement clinkers was studied.
显示更多 [+] 显示较少 [-]