细化搜索
结果 221-230 的 6,473
Spatial variation of short- and medium-chain chlorinated paraffins in ambient air across Australia
2020
Mourik, L. M. van | Wang, Xianyu | Paxman, Chris | Leonards, Pim E.G. | Wania, Frank | Boer, Jacob de | Mueller, Jochen F.
Atmospheric levels of chlorinated paraffins (CPs) at five remote, six rural and four urban sites in Australia were measured using XAD-2 passive air samplers (XAD-PAS). While long-chain CP (LCCP, C>₁₇) levels were below method detection limits (MDLs), short-chain CPs (SCCPs, C₁₀₋₁₃) and, for the first time, medium-chain CPs (MCCPs, C₁₄₋₁₇) and CPs with a carbon chain length of nine (CP–C9) were found at many sites (88%, 81% and 88%, respectively) across the Australian continent, representing a range of environmental conditions. Applying preliminary sampling rates of the XAD-PAS for CPs, gaseous CP levels in Australian air were <MDL-1.3 and <MDL-1.8 ng/m³ for ΣSCCPs and ΣMCCPs, respectively, with a significant decreasing trend from more densely to less densely populated areas. Atmospheric median levels in this study (0.37 and 0.47 ng/m³ for SCCPs and MCCPs, respectively) were at the lower end of the median range (0.32–10 and 3.0–4.2 ng/m³ for SCCPs and MCCPs, respectively) reported for CPs at predominantly urban or industrial sites elsewhere (apart from China and extremely remote sites such as Antarctica). Principal component analysis matched the SCCP and MCCP congener group patterns in samples with those found in commercial mixtures, indicating a prevalence of less chlorinated congener groups in the Australian atmosphere. Information about the Australian production, use and disposal of CPs as well as their levels in other environmental matrices, including humans, is needed for assessing their emissions, behaviour, fate and potential exposure.
显示更多 [+] 显示较少 [-]Atmospheric inverse estimates of CO emissions from Zhengzhou, China
2020
Fan, Hao | Zhao, Chuanfeng | Ma, Zhanshan | Yang, Yikun
Carbon monoxide (CO) is an important gas that affects human health and causes air pollution. However, the estimates of CO emissions in China are still subject to large uncertainties. Based on the CO mass concentration and the coupled Weather Research and Forecast (WRF) and Stochastic Time-Inverted Lagrangian Transport (STILT) model (WRF-STILT), this study estimates the CO emissions over Zhengzhou, China. The results show that the mean CO mass concentration was 1.17 mg m⁻³ from November 2017 to February 2018, with a clear diurnal variation. There were two periods of rapidly increasing CO concentration in the diurnal variation, which are 06:00–09:00 and 16:00–20:00 local time. The footprint analysis shows that the observation site is highly influenced by local emissions. The most influential regions to the site observations are northeast and northwest Zhengzhou, which are associated with the geographical barrier of the Taihang Mountains in the north and narrow Fenwei Plain in the west. The inversion result shows that the actual emissions are lower than the inventory estimates. Using the optimal scaling factors, the WRF-STILT simulations of CO concentration agree closely with the CO measurements with the linear fitting regression equation y = 0.87x + 0.15. The slopes of the linear fitting regressions between the WRF-STILT-simulated CO concentrations determined using the optimal emissions and the observations range from 0.72 to 0.89 for four months, and all the fitting results passed the significance test (P < 0.001). These results indicate that the new optimal emissions derived with the scaling factors could better represent the real emission conditions than the a priori emissions if the WRF-STILT model is assumed to be reliable.
显示更多 [+] 显示较少 [-]Effects of L-Glufosinate-ammonium and temperature on reproduction controlled by neuroendocrine system in lizard (Eremias argus)
2020
Zhang, Luyao | Chen, Li | Meng, Zhiyuan | Jia, Ming | Li, Ruisheng | Yan, Sen | Tian, Sinuo | Zhou, Zhiqiang | Diao, Jinling
In the context of global warming, an important issue is that many pesticides become more toxic, putting non-target organisms at higher risk of pesticide exposure. Eremias argus (a native Chinese lizard) was selected as animal model in this study. As a kind of poikilothermic vertebrate, E.argus is sensitive to temperature change. The experimental design [(with or without L-Glufosinate-ammonium (L-GLA) pollution × two temperatures (25 and 30 °C)] was used in this study for 90 days to identify the chronic effects of the pesticide–temperature interaction on the lizards’ neuroendocrine-regulated reproduction. Survival rate, body weight, clutch characteristics, testicular histopathology, the content of neurotransmitters and related enzyme activity, the level of sex steroid, the expression of Heat shock protein 70 (HSP70), antioxidant system, the accumulation and degradation of L-GLA were examined. Results showed that L-GLA disrupt reproduction of lizards through hypothalamus-pituitary-gonad (HPG) axis. In addition, temperature can not only change the environmental behavior of pesticides, but also alter the physiological characteristics of lizards. Thus, our results emphasized that temperature is an essential abiotic factor that should not be overlooked in ecotoxicological studies.
显示更多 [+] 显示较少 [-]Effects of multi-year biofumigation on soil bacterial and fungal communities and strawberry yield
2020
Zhang, Daqi | Yan, Dongdong | Cheng, Hongyan | Fang, Wensheng | Huang, Bin | Wang, Xianli | Wang, Xiaoning | Yan, Yue | Ouyang, Canbin | Li, Yuan | Wang, Qiuxia | Cao, Aocheng
Biofumigation is an effective, non-chemical method to control soil-borne pests and diseases and to maximize crop yield. We studied the responses of soil bacterial and fungal communities, the soil’s nutritional state and strawberry yield, when the soil was biofumigated each year for five consecutive years using fresh chicken manure (BioFum). BioFum significantly increased the soil’s NH4+-N, NO3−-N, available P and K and organic matter. Fusarium spp. and Phytophthora spp. which are known to cause plant disease, were significantly decreased after BioFum. In addition, Biofum increased the soil’s temperature, enhanced chlorophyll levels in the leaves of strawberry plants, and the soluble sugar and ascorbic acid content in strawberry fruit. We used high-throughput gene sequencing to monitor changes in the soil’s bacterial and fungal communities. Although BioFum significantly decreased the diversity of these communities, it increased the relative abundance of some biological control agents in the phylum Actinobacteria and the genera Pseudomonas, Bacillus and Chaetomium. An increase in these biological control agents would reduce the incidence of soil-borne pathogens and plant disease. Although strawberry marketable yield using BioFum was higher in the first three years, the decline in the final two years could be due to the accumulation of P and K which may have delayed flowering and fruiting. Methods to overcome yield losses using BioFum need to be developed in the future. Our research, however, showed that BioFum enhanced soil fertility, reduced the presence of soil pathogens, increased the relative abundance of beneficial bacteria and fungi and improved strawberry quality. Unlike chemical soil treatments that can cause pest and disease resistance when used continuously over many years, our multi-year research program on BioFum showed that this treatment provided significant benefits to the soil, plant and strawberry fruit.
显示更多 [+] 显示较少 [-]Mercury isotopes in frozen soils reveal transboundary atmospheric mercury deposition over the Himalayas and Tibetan Plateau
2020
Huang, Jie | Kang, Shichang | Yin, Runsheng | Guo, Junming | Lepak, Ryan | Mika, Sillanpää | Tripathee, Lekhendra | Sun, Shiwei
The concentration and isotopic composition of mercury (Hg) were studied in frozen soils along a southwest-northeast transect over the Himalaya-Tibet. Soil total Hg (HgT) concentrations were significantly higher in the southern slopes (72 ± 54 ng g−1, 2SD, n = 21) than those in the northern slopes (43 ± 26 ng g−1, 2SD, n = 10) of Himalaya-Tibet. No significant relationship was observed between HgT concentrations and soil organic carbon (SOC), indicating that the HgT variation was not governed by SOC. Soil from the southern slopes showed significantly negative mean δ202Hg (−0.53 ± 0.50‰, 2SD, n = 21) relative to those from the northern slopes (−0.12 ± 0.40‰, 2SD, n = 10). The δ202Hg values of the southern slopes are more similar to South Asian anthropogenic Hg emissions. A significant correlation between 1/HgT and δ202Hg was observed in all the soil samples, further suggesting a mixing of Hg from South Asian anthropogenic emissions and natural geochemical background. Large ranges of Δ199Hg (−0.45 and 0.24‰) were observed in frozen soils. Most of soil samples displayed negative Δ199Hg values, implying they mainly received Hg from gaseous Hg(0) deposition. A few samples had slightly positive odd-MIF, indicating precipitation-sourced Hg was more prevalent than gaseous Hg(0) in certain areas. The spatial distribution patterns of HgT concentrations and Hg isotopes indicated that Himalaya-Tibet, even its northern part, may have been influenced by transboundary atmospheric Hg pollution from South Asia.
显示更多 [+] 显示较少 [-]Global N6-methyladenosine profiling of cobalt-exposed cortex and human neuroblastoma H4 cells presents epitranscriptomics alterations in neurodegenerative disease-associated genes
2020
Tang, Jianping | Zheng, Chunyan | Zheng, Fuli | Li, Yuqing | Wang, Yuanliang | Aschner, Michael | Guo, Zhenkun | Yu, Guangxia | Wu, Siying | Li, Huangyuan
Excessive exposure to cobalt (Co) is known to make adverse impact on the nervous system, but its detailed mechanisms of neurotoxicity have yet to be determined. In this study, C57BL/6 mice (0, 4, 8, 16 mg/kg CoCl₂, 30 days) and human neuroblastoma H4 cells (0, 100, 400, 600 μM CoCl₂) were used as in vivo and in vitro models. Our results revealed that CoCl₂ intraperitoneal injection caused significant impairments in learning and memory, as well as pathological damage in the nervous system. We further certificated the alteration of m⁶A methylation induced by CoCl₂ exposure. Our findings demonstrate for the first time, significant differences in the degree of m⁶A modification, the biological function of m⁶A-modified transcripts between cortex and H4 cell samples. Specifically, MeRIP-seq and RNA-seq elucidate that CoCl₂ exposure results in differentially m⁶A-modified and expressed genes, which were enriched in pathways involving synaptic transmission, and central nervous system (CNS) development. Mechanistic analyses revealed that CoCl₂ remarkably changed m⁶A modification level by affecting the expression of m⁶A methyltransferase and demethylase, and decreasing the activity of demethylase. We observed variation of m⁶A modification in neurodegenerative disease-associated genes upon CoCl₂ exposure and identified regulatory strategy between m⁶A and potential targets mRNA. Our novel findings provide novel insight into the functional roles of m⁶A modification in neurodegenerative damage caused by environmental neurotoxicants and identify Co-mediated specific RNA regulatory strategy for broadening the epigenetic regulatory mechanism of RNA induced by heavy metals.
显示更多 [+] 显示较少 [-]Exposure assessment of emissions from mobile food carts on New York City streets
2020
Nahar, Kamrun | Rahman, Md Mostafijur | Raja, Amna | Thurston, George D. | Gordon, Terry
Food carts are common along streets in cities throughout the world. In North America, food cart vendors generally use propane, charcoal, or both propane and charcoal (P and C) for food preparation. Although cooking emissions are known to be a major source of indoor air pollution, there is limited knowledge on outdoor cooking’s impact on the ambient environment and, in particular, the relative contribution of the different cooking fuels. This field study investigated the air pollution the public is exposed to in the micro-environment around 19 food carts classified into 3 groups: propane, charcoal, and P and C carts. Concentrations near the food carts were measured using both real-time and filter-based methods. Mean real-time concentrations of PM₂.₅, BC₂.₅, and particle counts were highest near the charcoal food carts: 196 μg/m³, 5.49 μg/m³, and 69,000 particles/cm³, respectively, with peak exposures of 1520 μg/m³, 67.9 μg/m³, and 235,000 particles/cm³, respectively. In order of pollution emission impacts: charcoal > P and C > propane carts. Thus, significant differences in air pollution emissions occurred in the vicinity of mobile food carts, depending on the fuel used in food preparation. Local air pollution polices should consider these emission factors in regulating food cart vendor operations.
显示更多 [+] 显示较少 [-]Focus topics on microplastics in soil: Analytical methods, occurrence, transport, and ecological risks
2020
Li, Jia | Song, Yang | Cai, Yongbing
Microplastics with extremely high abundances are universally detected in marine and terrestrial systems. Microplastic pollution in the aquatic environment, especially in ocean, has become a hot topic and raised global attention. However, microplastics in soils has been largely overlooked. In this paper, the analytical methods, occurrence, transport, and potential ecological risks of microplastics in soil environments have been reviewed. Although several analytical methods have been established, a universal, efficient, faster, and low-cost analytical method is still not available. The absence of a suitable analytical method is one of the biggest obstacles to study microplastics in soils. Current data on abundance and distribution of microplastics in soils are still limited, and results obtained from different studies differ significantly. Once entering into surface soil, microplastics can migrate to deep soil through different processes, e.g. leaching, bioturbation, and farming activities. Presence of microplastics with high abundance in soils can alter fundamental properties of soils. But current conclusions on microplastics on soil organisms are still conflicting. Overall, research on microplastics pollution in soils is still in its infancy and there are gaps in the knowledge of microplastics pollution in soil environments. Many questions such as pollution level, ecological risks, transport behaviors and the control mechanisms are still unclear, which needs further systematical study.
显示更多 [+] 显示较少 [-]Predicting the modifying effect of soils on arsenic phytotoxicity and phytoaccumulation using soil properties or soil extraction methods
2020
Zhang, Xiaoqing | Dayton, Elizabeth A. | Basta, Nicholas T.
Soils have the ability to modify contaminant bioavailability and toxicity. Prediction the modifying effect of soil on arsenic phytoaccumulation and phytoavailability using either soil property data or soil chemical extraction data in risk assessment of contaminated soil is highly desirable. In this study, plant bioassays important to ecological receptors, were conducted with 20 soils with a wide range in chemical and physical soil properties to determine the relationships between As measured by soil chemical extraction (soil pore water, Bray-1, sodium phosphate solution, hydroxylamine hydrochloride, and acid ammonium oxalate) or soil physico/chemical properties on arsenic phytotoxicity and phytoaccumulation. Soil pore water As and Bray-1 extracted As were significantly (P < 0.01) correlated with lettuce tissue As and those extractants and sodium phosphate were correlated with ryegrass tissue As. Hydroxylamine and acid ammonium oxalate extractions did not correlate with plant bioassay endpoints. Simple regression results showed that lettuce tissue relative dry matter growth (RDMG) was inversely related to tissue As concentration (r² = 0.85, P < 0.01), with no significant relationship for ryegrass. Soil clay exhibited strong adsorption for As and significantly reduce tissue As for lettuce and ryegrass. In addition to clay content, reactive aluminum oxide (AlOx), reactive Fe oxide (FeOx) and eCEC was inversely related to ryegrass tissue As. Multiple regression equation was strongly predictive (r² = 0.83) for ryegrass tissue As (log transformed) using soil AlOx, organic matter, pH, and eCEC as variables. Soil properties can greatly reduce contaminant phytoavailability, plant exposure and risk, which should be considered when assessing contaminant exposure and site-specific risk in As-contaminated soils.
显示更多 [+] 显示较少 [-]Occurrence and distribution of organophosphate esters in the air and soils of Ny-Ålesund and London Island, Svalbard, Arctic
2020
Han, Xu | Hao, Yanfen | Li, Yingming | Yang, Ruiqiang | Wang, Pu | Zhang, Gaoxin | Zhang, Qinghua | Jiang, Guibin
The levels of eight organophosphate esters (OPEs) were analyzed in air and soil samples collected at Ny-Ålesund and London Island, Svalbard during the Chinese Scientific Research Expedition to the Arctic during 2014–2015. The concentrations of total OPEs (∑OPEs) ranged from 357 pg/m³ to 852 pg/m³ in the air and from 1.33 ng/g to 17.5 ng/g dry weight (dw) in the soils. Non-Cl OPEs accounted for 56 ± 13% and 62 ± 16% of ∑OPEs for the air and soil, respectively. Tris(2-chloroethyl) phosphate (TCEP) was the dominant compound in the air, with an average concentration of 180 ± 122 pg/m³. Triphenyl phosphate, tri(1-chloro-2-propyl) phosphate, and TCEP were the most abundant OPEs in the soils, with mean values of 1.77, 2.13, and 1.02 ng/g dw, respectively. Compared with the levels of polybrominated diphenyl ethers found in Arctic regions in previous studies, OPEs showed significantly higher concentrations, thereby indicating the large production and wide usage of OPEs globally. In addition, the fugacity fraction results indicated that net deposition from air to soil was dominated in the area. Overall, the occurrence and distribution of OPEs in the air and soils in the Arctic region indicated that OPEs can undergo long-range atmospheric transport and accumulate in remote regions.
显示更多 [+] 显示较少 [-]