细化搜索
结果 221-230 的 683
Do electromagnetic fields from subsea power cables effect benthic elasmobranch behaviour? A risk-based approach for the Dutch Continental Shelf 全文
2024
Hermans, Annemiek | Winter, Hendrik V. | Gill, Andrew B. | Murk, Albertinka J.
Subsea power cables cause electromagnetic fields (EMFs) into the marine environment. Elasmobranchs (rays, skates, sharks) are particularly sensitive to EMFs as they use electromagnetic-receptive sensory systems for orientation, navigation, and locating conspecifics or buried prey. Cables may intersect with egg laying sites, mating, pupping, and nursery grounds, foraging habitat and migration routes of elasmobranchs and the effects of encountering EMFs on species of elasmobranchs are largely unknown. Demonstrated behavioural effects are attraction, disturbance and indifference, depending on EMF characteristics, exposed life stage, exposure level and duration. We estimated exposure levels of elasmobranchs to subsea power cable EMFs, based on modelled magnetic fields in the Dutch Continental Shelf and compared these to reported elasmobranch sensory sensitivity ranges and experimental effect levels. We conclude that the risk from subsea power cables has a large uncertainty and varies per life stage and species ecology. Based on estimated no-observed effect levels (from 10−3 to 10−1 μT) we discuss what will probably be the most affected species and life stage for six common benthic elasmobranchs in the Southern North Sea. We then identify critical knowledge gaps for reducing the uncertainty in the risk assessments for EMFs effects on benthic elasmobranchs.
显示更多 [+] 显示较少 [-]Natural soundscapes of lowland river habitats and the potential threat of urban noise pollution to migratory fish 全文
2024
te Velde, Kees | Mairo, Amy | Peeters, Edwin T.H.M. | Winter, Hendrik V. | Tudorache, Christian | Slabbekoorn, Hans
Migratory fish populations have experienced great declines, and considerable effort have been put into reducing stressors, such as chemical pollution and physical barriers. However, the importance of natural sounds as an information source and potential problems caused by noise pollution remain largely unexplored. The spatial distribution of sound sources and variation in propagation characteristics could provide migratory fish with acoustic cues about habitat suitability, predator presence, food availability and conspecific presence. We here investigated the relationship between natural soundscapes and local river conditions and we explored the presence of human-related sounds in these natural soundscapes. We found that 1a) natural river sound profiles vary with river scale and cross-sectional position, and that 1b) depth, width, water velocity, and distance from shore were all significant factors in explaining local soundscape variation. We also found 2a) audible human activities in almost all our underwater recordings and urban and suburban river parts had elevated sound levels relative to rural river parts. Furthermore, 2b) daytime levels were louder than night time sound levels, and bridges and nearby road traffic were much more prominent with diurnal and weekly patterns of anthropogenic noise in the river systems. We believe our data show high potential for natural soundscapes of low-land river habitat to serve as important environmental cues to migratory fish. However, anthropogenic noise may be particularly problematic due to the omnipresence, and relatively loud levels relative to the modest dynamic range of the natural sound sources, in these slow-flowing freshwater systems.
显示更多 [+] 显示较少 [-]Revealing the role of land-use features on macrolitter distribution in Swiss freshwaters 全文
2024
Schreyers, L.J. | Erismann, R. | Erismann, S. | Ludwig, C. | Patel, B. | Filella, M. | van Emmerik, T.H.M.
Macrolitter, especially macroplastics, (> 0.5 cm) negatively impact freshwater ecosystems, where they can be retained along lake shores, riverbanks, floodplains or bed sediments. Long-term and large-scale assessments of macrolitter on riverbanks and lake shores provide an understanding of litter abundance, composition, and origin in freshwater systems. Combining macrolitter quantification with hydrometeorological variables allows further study of leakage, transport, and accumulation characteristics. Several studies have explored the role of hydrometeorological factors in influencing macrolitter distribution and found that river discharge, runoff, and wind only partially explains its distribution. Other factors, such as land-use features, have not yet been thoroughly investigated. In this study, we provide a country-scale assessment of land-use influence on macrolitter abundance in freshwater systems. We analyzed the composition of the most commonly found macrolitter items (referred to as ‘top items’, n = 42,565) sampled across lake shores and riverbanks in Switzerland between April 2020 and May 2021. We explored the relationship between eleven land-use features and macrolitter abundance at survey locations (n = 143). The land-use features included buildings, city centers, public infrastructure, recreational areas, forests, marshlands, vineyards, orchards, other land, and rivers and canals. The majority of top items are significantly and positively correlated with land-use features related to urban coverage, notably roads and buildings. Over 60% of top items were found to be correlated with either roads or buildings. Notably, tobacco, food and beverage-related products, as well as packaging and sanitary products, showed strong associations with these urban land-use features. Other types of items, however, did not exhibit a relationship with land-use features, such as industry and construction-related items. Ultimately, this highlights the need to combine measures at the local and regional/national scales for effective litter reduction.
显示更多 [+] 显示较少 [-]Effects of LDPE and PBAT plastics on soil organic carbon and carbon-enzymes : A mesocosm experiment under field conditions 全文
2024
Jia, Xinkai | Yao, Yu | Tan, Gaowei | Xue, Sha | Liu, Mengjuan | Tang, Darrell W.S. | Geissen, Violette | Yang, Xiaomei
Although the effects of plastic residues on soil organic carbon (SOC) have been studied, variations in SOC and soil carbon-enzyme activities at different plant growth stages have been largely overlooked. There remains a knowledge gap on how various varieties of plastics affect SOC and carbon-enzyme activity dynamics during the different growing stages of plants. In this study, we conducted a mesocosm experiment under field conditions using low-density polyethylene and poly (butylene adipate-co-terephthalate) debris (LDPE-D and PBAT-D, 500–2000 μm (pieces), 0%, 0.05%, 0.1%, 0.2%, 0.5%, 1%, 2%), and low-density polyethylene microplastics (LDPE-M, 500–1000 μm (powder), 0%, 0.05%, 0.1%, 0.5%) to investigate SOC and C-enzyme activities (β-xylosidase, cellobiohydrolase, β-glucosidase) at the sowing, seedling, flowering and harvesting stages of soybean (Glycine Max). The results showed that SOC in the LDPE-D treatments significantly increased from the flowering to harvesting stage, by 12.69%–13.26% (p 0.05), but significantly decreased in the 0.05% and 0.1% LDPE-M treatments from the sowing to seedling stage (p 0.05). However, PBAT-D had no significant effect on SOC during the whole growing period. For C-enzyme activities, only LDPE-D treatments inhibited GH (17.22–38.56%), BG (46.7–66.53%) and CBH (13.19–23.16%), compared to treatment without plastic addition, from the flowering stage to harvesting stage. Meanwhile, C-enzyme activities and SOC responded nonmonotonically to plastic abundance and the impacts significantly varied among the growing stages, especially in treatments with PBAT-D (p 0.05). These risks to soil organic carbon cycling are likely mediated by the effects of plastic contamination and degradation soil microbe. These effects are sensitive to plastic characteristics such as type, size, and shape, which, in turn, affect the biogeochemical and mechanical interactions involving plastic particles. Therefore, further research on the interactions between plastic degradation processes and the soil microbial community may provide better mechanistic understanding the effect of plastic contamination on soil organic carbon cycling.
显示更多 [+] 显示较少 [-]3D analysis of microplastic settling in algal suspensions 全文
2024
de Rijk, V. | Barchiesi, M. | Kooi, M. | Koelmans, A.A.
The influence of algae presence in surface water on the settling velocities of microplastics is unknown, and determining it is challenging due to the turbidity of algal suspensions. Measuring the settling velocity of microplastics has traditionally relied on either manual measurement techniques or 2D Particle Tracking Velocimetry (PTV). This study introduces a 3D-PTV method tailored to determine the effects of algae (Synechoccocus sp.) on microplastic settling speeds in semi-large columns. We demonstrated that 3D PTV produces much more accurate results than 2D particle tracking. Testing the method in six experiments with varying algae concentrations revealed consistent results across the experiments and alignment with some theoretical approximations. The results were concurrent with calculated 2D speeds. No influence of algal density on settling velocities was found, which is highly relevant for microplastic fate modeling in eutrophic systems. We highlight the applicability and accuracy of 3D particle tracking velocimetry in further understanding microplastic settling behavior.
显示更多 [+] 显示较少 [-]Assessing pesticide residue occurrence and risks in the environment across Europe and Argentina 全文
2024
Alaoui, Abdallah | Christ, Florian | Abrantes, Nelson | Silva, Vera | González, Neus | Gai, Lingtong | Harkes, Paula | Navarro, Irene | de la Torre, Adrián | Martínez, María Ángeles | Norgaard, Trine | Vested, Anne | Schlünssen, Vivi | Aparicio, Virginia Carolina | Campos, Isabel | Pasković, Igor | Pasković, Marija Polić | Glavan, Matjaž | Ritsema, Coen | Geissen, Violette
The widespread and extensive use of pesticides in European crop production to reduce losses from weeds, diseases, and insects may have serious consequences on the ecosystem and human health. This study aimed to identify 20 active substances of high health risk, based on their detection frequency within and across the environmental matrices (soil, crop, water, and sediment) and to identify their associated hazardous effects. A sampling campaign was conducted across 10 case study sites in Europe and 1 in Argentina and included conventional and organic farming systems. In 31% of cases, the detected substances were found at a higher concentration in the soil than in the corresponding crops, 93% of the compounds were fungicides, and the remainder were insecticides. 43% of the substances, 57% of which were insecticides, were detected only in soil. There was a clear relationship between soils and crops in terms of contamination, but not between water and sediment. Portuguese soil (wine grapes) had the highest number of substances (12) with average concentrations (AC) varying between 1 and 162 μg/kg, followed by French (11 substances in wine grapes) (1≤AC≤64 μg/kg) and Spanish soils (9 substances in vegetables) (3≤AC≤59 μg/kg). The crops corresponding to these soils contained a relatively high number of detected substances and several in high average concentrations (AC). The risk quotient was consistently higher for conventional farms than for organic farms. For the soils from conventional farms, 5 active substances (chlorpyrifos, glyphosate, boscalid, difenoconazole, lambda-cyhalothrin, and one metabolite: AMPA) were considered high risk. For water samples, 2 substances (dieldrin and terbuthylazine) found were high risk, and for sediment, there were 3 substances (metalaxyl-M, spiroxamine, and lambda-cyhalothrin). There were 6 substances detected in crops that are suspected to cause human health effects. Uncontaminated soil is a prerequisite for the adoption of sustainable alternatives to pesticides. Efforts are needed to elucidate the unknown effects of mixtures, including biocides and banned compounds in addition to the substances used in agriculture.
显示更多 [+] 显示较少 [-]Cyanopeptides occurrence and diversity in a Brazilian tropical reservoir : Exploring relationships with water quality 全文
2024
Arruda, Renan Silva | Jacinavicius, Fernanda Rios | Pessoa Noyma, Natália | Drummond, Erick | Barreto, Davi Almeida | da Silva, Lúcia Helena Sampaio | Huszar, Vera Lucia | Pinto, Ernani | Lürling, Miquel | Marinho, Marcelo Manzi
Microcystins (MCs) are a class of toxic secondary metabolites produced by some cyanobacteria strains that endanger aquatic and terrestrial organisms in various freshwater systems. Although patterns in MC occurrence are being recognized, divergences in the global data still hamper our ability to predict the toxicity of cyanobacterial blooms. This study aimed (i) to determine the dynamics of MCs and other cyanopeptides in a tropical reservoir, (ii) to investigate the correlation between peptides and potential cyanotoxin producers (iii) identifying the possible abiotic factors that influence the peptides. We analyzed, monthly, eight MC variants (MC-RR, -LA, -LF, -LR, -LW, -YR, [D-Asp3]-RR and [D-Asp3]-LR) and other peptides in 47 water samples collected monthly, all season long, from two sampling sites in a tropical eutrophic freshwater reservoir, in southeastern Brazil. The cyanopeptides were assessed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The biomass of potential cyanobacterial producers and water quality variables were measured. MCs were detected in both sampling sites year-round; the total MC concentration varied from 0.21 to 4.04 μg L−1, and three MC variants were identified and quantified (MC-RR, [D-Asp3]-RR, -LR). Additionally, we identified 28 compounds belonging to three other cyanopeptide classes: aeruginosin, microginin, and cyanopeptolin. As potential MC producers, Microcystis spp. and Dolichospermum circinalis were dominant during the study, representing up to 75% of the total phytoplankton. Correlational and redundancy analysis suggested positive effects of dissolved oxygen, nitrate, and total phosphorus on MC and microginins concentration, while water temperature appeared to favor aeruginosins. A comparison between our results and historical data showed a reduction in total phosphorus and cyanobacteria, suggesting increased water quality in the reservoir. However, the current MC concentrations indicate a rise in cyanobacterial toxicity over the last eight years. Moreover, our study underscores the pressing need to explore cyanopeptides other than MCs in tropical aquatic systems.
显示更多 [+] 显示较少 [-]Presenting a new model of municipal waste management cost reduction priorities based on the Gray-TOPSIS model 全文
2024
Seyed Rasoul Salehi | Reza Raoufi | Katayoon Varshosaz | Seyed Mohammad Mirhosseini | Reza Jalilzadeh Yengejeh
The role of economic factors is significant in the municipal waste management. The present descriptive-applied study aimed to present a new model of municipal waste management cost reduction priorities based on the Gray-TOPSIS model in Ahvaz City in 2022. Following the collection of data on the current municipal waste management, effective criteria influencing cost reduction in municipal waste management were determined through document analysis. Expert analysis was also utilized to identify factors impacting cost reduction in municipal waste management. The Gray-TOPSIS methodology was applied to prioritize solutions for cost reduction in municipal waste management. Through calculating the Kendall agreement index, 20 solutions for cost reduction in waste management were categorized and prioritized into educational, political, cultural, and executive groups. The findings revealed that while political measures such as approving laws related to municipal waste management and incentive and punitive policies with special weightings of 0.804 and 0.799, respectively, are the most effective solutions for reducing waste management costs, overall, educational process-related solutions with an average weighting of 0.686 have a higher priority than other processes. Government support and public education through various means, especially non-governmental media and social networks, are potential solutions for reducing municipal waste management costs in Ahvaz City under current conditions.
显示更多 [+] 显示较少 [-]Identifying and ranking indicators affecting the environment with the aim of providing a guide on the establishment and operation of exhibition sites using BWM multi-criteria decision making method 全文
2024
Davoud Adineh | Reza Amirnezhad | Keyvan Saeb | Aptin x Aptin Rahnavard | Farid Gholamreza Fahimi
The exhibition industry serves as a huge platform for face-to-face participation and the formation of potential economic and business relationships in the current century. These gatherings cost greatly in terms of energy resources are responsible for the emission of greenhouse gases and other pollutants into the water, air, and soil. The present study seeks to investigate and identify the pollutant indices resulting from the activities of the exhibition industry, its respective services and preparing guide on the organization of exhibition sites. For this purpose, the most important environmental criteria influenced by the industry were first identified through the Delphi method and were then classified into nine main priority groups based on multi-criteria decision-making and the best/ worst method(BWM[1]) method. The environmental index of the region was thus selected as the most important criterion whereas the social and economic indices were determined to be the least important criteria. Moreover, 58 sub-indices of the main indices were also weighed and prioritized based on the pairwise comparison. As a result, the sub-criterion of environmentally sensitive region ranked first while the sub-criterion of impact on the local and regional identity was identified as the least important influential sub-criterion. Weighing and prioritization of the indices were eventually the main foundation for the compilation of the exhibition site construction and operation instructions, and persistent monitoring of some indices such as the indoor air quality and consumed energy can reduce the negative environmental consequences of exhibition activities significantly.
显示更多 [+] 显示较少 [-]Antibacterial effects of copper- and silver-coated carbon nanotubes synthesized by plasma-enhanced chemical vapor deposition on Staphylococcus aureus and Escherichia coli: a comparative study 全文
2024
Pooya Sepehr | Seyed Majid Borghei | Morad Ebrahimkhas | Nasim Nobari
The use of copper (Cu) and silver (Ag) nanoparticles in coatings can eliminate surface microbial contamination. This study compared antibacterial activity of Cu- (Cu/CNTs) and Ag-coated carbon nanotubes (Ag/CNTs) synthesized by plasma-enhanced chemical vapor deposition (PECVD) against Escherichia coli and Staphylococcus aureus. Initially, the PECVD technique was applied to deposit the CNTs on high-resistivity silicon wafers previously decorated by nickel catalyst using an Electron Beam Gun. Then, the nanotubes were coated by Cu and Ag thin films in a vacuum evaporator using the Direct Current (DC) Magnetron Sputtering method. Finally, the antibacterial effects were determined by Standard Plate Count (SPC, with film thicknesses of 0, 10, 30 and 60 nm) and Disk Diffusion Test (based on zone of inhibition (ZOI) with nanoparticle concentrations of 5, 10 and 15 µg/mL). According to the SPC findings, the highest antibacterial activity of Cu/CNTs was found for the film thickness of 60 nm against E. coli (66%), and the lowest activity was related to the film thickness of 19 nm against S. aureus (28.8%). The antibacterial activity of Ag/CNTs was about 70% against E. coli with the highest thickness and about 34.12% against S. aureus. The lowest ZOI was measured for the bare CNTs at a concentration of 5 µg/mL (12 mm), and the highest ZOI was related to Ag/CNTs with a concentration of 15 µg/mL against S. aureus (18 mm). To conclude, the carbon nanotube composites coated with copper or silver nanoparticles can be used to control bacterial growth in aqueous solutions.
显示更多 [+] 显示较少 [-]