细化搜索
结果 231-240 的 502
Carbon Dioxide Adsorption by Variation in Operating Parameters of Sound Assisted Fluidization Using Coal Based Fine Activated Carbon
2024
Ganorkar, A. P. | Langde, A. M.
This research delves into the promising domain of CO2 capture through fine solid activated carbon adsorbent, offering a more energy-efficient alternative to traditional adsorption methods. The central challenge addressed here is the utility of cheaper CO2 adsorbent, fine powder materials whose properties can be precisely tailored via molecular-level fictionalization. Equally vital is selecting an optimal fluidizing column configuration that maximizes CO2 interaction with adsorption particles and enhances adsorption efficiency. The proposed solution is a fluidized bed column uniquely equipped with integrated acoustic vibrations to counteract interparticle forces common in fine powders. For adsorption evaluations, sound-assisted fluidized-bed experimentation on a laboratory size was set up. Adsorbent material activated carbon made up of coal underwent rigorous testing between a range of 20 Hz-200 Hz and 20 dB-135 dB. Results reveal the beneficial effects of acoustic enhancement of fluidization quality and adsorption efficiency, increased adsorption capacity, enhanced bed utilization, and accelerated adsorption rates. Extensive research has been conducted on the detailed effects of major operational variables on adsorption performance, notably frequency, sound intensity, and minimum fluidization velocity. The findings highlight the pivotal role of particle size with mean size 75 microns range as a determinant of adsorption capacity at 100 Hz and 125 dB. At the end of experimentation, the adsorbent considered for the experiment is compared to the study adsorption capacity at operating conditions. The research concludes with a discussion on the effects of influencing parameters for adsorption on employing sound vibrations using fluidization technique adsorption for CO2 capture.
显示更多 [+] 显示较少 [-]Investigation of Rosemary Oil as Environmentally Friendly Corrosion Inhibitor of Aluminum Alloy
2024
Kamarska, K. V.
The inhibitory effect of Rosemary oil on the corrosion of aluminum alloy EN AW-2011 in 1M H2SO4 solution was studied by weight loss and electrochemical methods such as open circuit potential (OCP), linear sweep voltammetry (LSV) and linear polarization resistance (LPR). The inhibition efficiency increases with increasing the concentration and shows maximum inhibition efficiency (70.7 %) at optimum concentration (0.05 g.L-1). The linear polarization resistance measurements show that the presence of Rosemary oil in 1M H2SO4 solution influences polarization resistance increasing and corrosion current decreasing. The voltammetric curve shows that Rosemary oil reduces the anodic process. Open circuit potential results confirmed that organic compounds present in Rosemary oil can form a protective layer on aluminum surfaces. The inhibitive effect was probably caused by the adsorption of organic compounds such as 1,8-cineole, α-pinene, borneol, limonene, and myrcene on aluminum surfaces which are non-toxic and environmentally friendly. This study showed that the essential oil of Rosemary could be used as an environmentally friendly inhibitor of the corrosion of alloy EN AW-2011 in an acidic medium.
显示更多 [+] 显示较少 [-]Novel Bacterial Consortium for Mitigation of Odor and Enhance Compost Maturation Rate of Municipal Solid Waste: A Step Toward a Greener Economy
2024
Wijerathna, P.A.K.C. | Udayagee, K.P.P. | Idroos, F.S. | Manage, Pathmalal M.
Composting is an integral component of sustainable Municipal Solid Waste (MSW) management within the circular bio-economy platform. However, it faces challenges due to malodorous emissions that impact environmental and societal equilibrium. The present study aims to minimize odorous emissions and expedite compost maturation using a novel, efficient microbial consortium. Bacteria sourced from open dump sites in Sri Lanka were carefully screened based on concurrent enzyme production. Five developed consortia were tested for their performance in reducing malodors during the composting process of MSW. Consortium No. 5 (C5), comprised of Bacillus haynesii, Bacillus amyloliquefaciens, and Bacillus safensis, demonstrated outstanding performance with a significant (p < 0.05) reduction in odorous emissions. Additionally, consortium C5 exhibited impressive control over gas emissions, maintaining VOC, CH4, NH3, and H2S concentrations within ranges of 0.5-6 ppm, 0.5-0.8 ppm, 0.3-0.5 ppm, and 0.5-0.6 ppm, respectively, compared to control concentrations of 4.5-10.2 ppm, 0.5-5.5 ppm, 0.3-5.5 ppm, and 0.5-6.4 ppm, respectively. Additionally, comprehensive Electronic nose (E-nose) analysis substantiated C5’s efficiency in attenuating Methane-Aliphatic compounds, Sulfur and Aromatic compounds, along with low-polarity aromatic and alkane compounds, all with statistical significance (p < 0.05). Further, the developed consortium could reduce the composting time from 110 ± 10 days to 17 ± 3 days, offering a sustainable solution for global MSW management.
显示更多 [+] 显示较少 [-]Nephrotoxicity of Cylindrospermopsin (CYN) and Microcystin-LR (MC-LR) on Mammalian Kidney: Wistar Rat as a Model Assessment
2024
Abeysiri, H.A.S.N. | Wanigasuriya, J.K.P. | Suresh, T.S. | Beneragama, D.H. | Manage, P.M.
Naturally derived cyanotoxins, cylindrospermopsin (CYN), and microcystin-LR (MC-LR) have shown hepatotoxic and nephrotoxic effects in several studies. The present study aimed to determine the possible nephrotoxicity of MC-LR and CYN on mammalian kidneys using male Wistar rats as an animal model. Potential nephrotoxicity was evaluated at different doses of CYN (0.175 μg.kg-1, 0.140 μg.kg-1, 0.105 μg.kg-1) and MC-LR (0.105 μg.kg-1, 0.070 μg.kg-1, 0.035 μg.kg-1) was observed. Water samples from dug wells contaminated with CYN (0.161 μg.kg-1) and MC-LR (0.091 μg.kg-1) from the Padaviya area in Anuradhapura, Sri Lanka were used as environmental samples. The control groups were treated with distilled water. The exposure time of rats to the toxin was 90 days. Evaluation of urinary creatinine, serum creatinine, and Kidney Injury Molecule-1 (KIM-1) were estimated using standard protocols. A significant increase in serum creatinine levels was observed in all CYN and MC-LR treated groups (p<0.05) after 7 and 42 days of exposure, respectively, compared to control. It was found a decrease of urine creatinine when rats were treated with different concentrations of CYN and MC-LR (p<0.05) after 7 days compared to the control. The highest KIM-1 concentrations were recorded at 0.175 μg.kg-1 of CYN and 0.105 μg.kg-1 of MC-LR. The concentrations of KIM-1 in the control groups for CYN-treated and MC-LR-treated were not detected. Luminal protein, nuclear pyknosis, mild tubular epithelial swelling, vascular congestion, and interstitial inflammation in CYN and MC-LR treated groups were common. No predominant changes were observed in the control groups treated with CYN and MC-LR. The results of the present study confirm that the consumption of CYN and MC-LR-contaminated water may lead to kidney injury in Wistar rats.
显示更多 [+] 显示较少 [-]Fuzzy Logic Harmony in Water: Mamdani Inference System Applied to Evaluate Pristine Pond Water Quality
2024
Priya, M. | Kumaravel, R.
Aquatic ecosystems that are subject to urbanization and environmental changes, such as the Kapaleeswarar and Chitrakulam tanks, depend on evaluating water quality. Their complicated data present challenges for conventional approaches. The usefulness of the Mamdani fuzzy inference system in determining the water quality in these tanks is investigated in this work. It creates a comprehensive assessment based on subject-matter expertise by handling ambiguous descriptors with linguistic variables and fuzzy sets. The system’s procedures for implementation are described in detail, with an emphasis on how well they can manage interrelated variables. The study shows how well the system measures the water quality in tanks and suggests ways to improve it. Tank evaluation that incorporates the Mamdani system encourages comprehensive resource management and cultural preservation.
显示更多 [+] 显示较少 [-]Green Nanotech: A Review of Carbon-Based Nanomaterials for Tackling Environmental Pollution Challenges
2024
Shaik, Rameeja | Ghosh, Buddhadev | Barman, Harish Chandra | Rout, Arijit | Padhy, Pratap Kumar
In recent times, nanotechnology has experienced widespread acclaim across diverse sectors, including but not limited to tissue engineering, drug delivery systems, biosensors, and the mitigation and monitoring of environmental pollutants. The unique arrangement of carbon atoms in sp3 configurations within carbon nanomaterials endows them with exceptional physical, mechanical, and chemical characteristics, driving them to the forefront of materials research. Their appeal lies in their efficacy as superior adsorbents and their exceptional thermal resistance, making them versatile in various applications. The present review extensively explores a range of carbon-based nanomaterials, delving into their synthesis methods and examining their multifaceted applications in addressing environmental pollutants. It is crucial to emphasize that the popularity of carbon-based nanomaterials arises from their potential to serve as superior adsorbents, coupled with their outstanding thermal resistance properties. These attributes contribute to their applicability in diverse environmental contexts. Looking ahead, carbon-based nanomaterials are poised to emerge as environmentally friendly and cost-effective materials, representing promising and potential avenues for the advancement of sustainable technology.
显示更多 [+] 显示较少 [-]Assessment of Deposited Red Clay Soil in Kirkuk City Using Remote Sensing Data and GIS Techniques
2024
Salahalden, V. F. | Shareef, M. A. | Nuaimy, Q. A. M. Al
This study investigates the physical characteristics of red clay using the IDW approach and linear regression modeling in an area of 268.12 km2, focusing on Kirkuk, Bor, and Jambor structures. Through the analysis of 52 soil samples and the integration of laboratory data with IDW and regression results, several significant findings have emerged. The IDW method combined with linear regression proves to be a cost-effective and efficient approach for obtaining soil property data and generating accurate digital maps of red clay’s physical features. The Silt concentration exhibits a wide range, while the gravel content remains relatively low, indicating the predominance of silt in the soil composition. Analysis of Atterberg limits reveals the soil’s behavior and consistency in response to moisture, with the plasticity index generally falling within the low to medium range due to the considerable silt content in most soil samples. The linear regression model highlights positive correlations between the liquid limit, plastic limit, and plasticity index. Moderately positive relationships exist between the liquid limit and clay content, as well as a weak positive association between the liquid limit and specific gravity. Dry density, on the other hand, shows no significant correlation with other physical variables, suggesting its independence from the measured parameters. The plastic limit demonstrates a stronger relationship with the clay content compared to the liquid limit. Additionally, weak positive correlations are found between the liquid limit, plastic limit, and specific gravity and water content, indicating the influence of moisture on these parameters. Furthermore, gravel exhibits a moderate positive correlation with sand and silt concentrations, while a strong positive correlation is observed between sand and silt contents, underscoring their close association with the soil composition.
显示更多 [+] 显示较少 [-]Petrography and Diagenesis of Thin-Bed Reservoirs from the Eastern Folded Belt of Bangladesh
2024
Bhuiyan, Md. Mesbah Uddin | Bhuiyan, Md. Anwar Hossain | Islam, Md. Saiful | Sabira, Umma
The main purpose of the study is to identify the thin-bed reservoirs of the Eastern Folded Belt (Sylhet and Bandarban) and characterize them with diligence. A detailed qualitative and quantitative analysis has been carried out. It is based on thin-section petrographic analyses of sandstone samples. These samples are from the reservoir horizons of the Sylhet region and Bandarban region fields. The purpose of this analysis is to characterize the textural and mineralogical properties. Additionally, it aims to evaluate the post-depositional diagenetic changes. The results obtained from the field and laboratory analysis are studied extensively to characterize the thin-bed reservoirs. Samples from the Sylhet area are medium-coarse-grained, fairly sorted, tight packing, submature-mature sublithic characteristics. Contrarily, samples from the Bandarban region are mature-submature sublithic arenites, which are fine-medium-grained, moderately well-sorted, and moderately loosely packed. Despite the similarity of the detrital elements (quartz, feldspar, lithic grains, mica, etc.) in the two areas, silica cementation is more frequent in Sylhet region samples than early carbonate cementation in Bandarban region samples. Comparatively speaking, the sediments in the Sylhet region are more compact than those in the Bandarban region. The most important outcome of this study is that the thin bed of the unconventional reservoir and the conventional reservoir are in close proximity. The Thin-bed reservoir units of the Eastern Folded Belt are found to be medium to fine-grained and well sorted, with frequent alteration of sand-shale with the prevalence of parallel bedded sandstone. Average porosity is 4% to 12%, and pore spaces are interconnected. So, the permeability rate is good enough to flow the hydrocarbon through these pore spaces. Most importantly, the thin bed and tight reservoir (average porosity 4% to 12%, but pore spaces are not interconnected) are not more prominent than 1 meter or 2 meters. Subsequently, though the vertical thickness is not so high, they keep up a momentous tirelessness of horizontal progression. On the contrary, at whatever point it comes to a conventional reservoir, the vertical thickness is higher than that of the unconventional reservoir. But their lateral persistence is not as long as unconventional ones.
显示更多 [+] 显示较少 [-]Application of Membrane Separation Technology in Electroplating Wastewater Treatment and Resource Recovery: A Review
2024
Zhang, Le | Chen, Ying | Zhang, Huan | Jin, Yabin | Shen, Zhe | Duan, Gending
The rapid development of industry has led to the generation of a large amount of electroplating wastewater. The direct discharge of untreated electroplating wastewater may lead to the formation of toxic metal-organic complexes, which is a challenging problem for human health and the living environment of organisms. Due to the high solubility of heavy metals in aquatic environments and their easy absorption by organisms, effective treatment of electroplating wastewater is of great significance. The ultimate goal of electroplating wastewater treatment should be to recover metals and water from electroplating wastewater. In indoor experiments, pilot tests, and industrial applications of electroplating wastewater treatment, membrane treatment technology commonly used in wastewater terminal treatment has attracted great attention. Membrane treatment technology seems to be the most promising method for removing heavy metals and organic pollutants from electroplating wastewater. This article reviews the membrane treatment technologies for electroplating wastewater, introduces the advantages and disadvantages of various membranes in the treatment of electroplating wastewater, the removal efficiency of pollutant types, and their comparison. The focus is on the treatment effects of nano-filtration membrane, ultra-filtration membrane, micro-filtration membrane, reverse osmosis membrane, ceramic membrane, biofilm, etc., on electroplating wastewater. Compared with a single treatment method, the combination of different processes shows higher efficiency in removing various pollutants.
显示更多 [+] 显示较少 [-]Assessing Riparian Floristic Diversity and Vegetation Dynamics in the Vamanapuram River Basin, Kerala: A Comprehensive Analysis
2024
Vincy, M. V. | Brilliant, R.
The Vamanapuram River Basin (VRB) is home to a diverse range of plant species, including 152 distinct species from 50 botanical families. Poaceae, Leguminosae, Araceae, and Aseraceae are the most abundant, with 13 species. Euphorbiaceae, Acanthaceae, Apocynaceae, and Rubiaceae also contribute to the biodiversity hotspots. The VRB’s vegetation profile is characterized by a dynamic interplay of plant forms and ecological niches, with 74 herbs, 30 shrubs, 12 grasses, 1 liana, and 35 towering trees. The Poaceae family thrives in this environment due to hydrological factors. The sampling sites P6 and P5 exhibit high relative frequency and density, with key species like Macaranga peltata, Ficus hispida, and Swietenia macrophylla. Diversity indices like the Shannon-Wiener diversity index reaffirm the VRB’s tropical forest character. Beta-diversity patterns reveal unique plant species distribution dynamics among different panchayaths, emphasizing their ecological complexities. The study emphasizes the demand for specialized management and conservation techniques in this environmentally active region.
显示更多 [+] 显示较少 [-]