细化搜索
结果 2321-2330 的 3,197
Synthesis and larvicidal activity of low-temperature stable silver nanoparticles from psychrotolerant Pseudomonas mandelii
2015
Mageswari, Anbazhagan | Subramanian, Parthiban | Ravindran, Vini | Yesodharan, Sreelekha | Bagavan, Asokan | Rahuman, Abdul Abdul | Karthikeyan, Sivashanmugam | Gothandam, Kodiveri Muthukaliannan
Applications based on silver nanoparticles (AgNPs) are limited by low temperatures, which cause aggregation of the nanoparticle fraction, leading to reduced efficacy of their products. We aimed at studying AgNP synthesis by psychrotolerant bacteria, its stability under long-term storage, and larvicidal activity under low-temperature conditions. Electron and atomic force microscopy studies revealed that 6 among 22 psychrotolerant isolates synthesized AgNPs with an average diameter of 1.9–14.1 nm. Pseudomonas mandelii SR1 synthesized the least-sized AgNPs with an average diameter of 1.9–10 nm, at temperatures as low as 12 °C without aggregate formation, and the synthesized nanoparticles were stable for up to 19 months of storage period. On studying their larvicidal activity, LC₉₀(lethal concentration) values against Anopheles subpictus and Culex tritaeniorhynchus larvae were at 31.7 and 35.6 mg/L, respectively. Stable non-aggregate AgNPs at low-temperature conditions from P. mandelii SR1, coupled with their larvicidal property, can be applied to control larval populations in water bodies located in seasonal or permanently cold environments.
显示更多 [+] 显示较少 [-]Exploring Actinobacteria assemblages in coastal marine sediments under contrasted Human influences in the West Istria Sea, Croatia
2015
Duran, Robert | Bielen, Ana | Paradžik, Tina | Gassie, Claire | Pustijanac, Emina | Cagnon, Christine | Hamer, Bojan | Vujaklija, Dušica
The exploration of marine Actinobacteria has as major challenge to answer basic questions of microbial ecology that, in turn, will provide useful information to exploit Actinobacteria metabolisms in biotechnological processes. The ecological functions performed by Actinobacteria in marine sediments are still unclear and belongs to the most burning basic questions. The comparison of Actinobacteria communities inhabiting marine sediments that are under the influence of different contamination types will provide valuable information in the adaptation capacities of Actinobacteria to colonize specific ecological niche. In the present study, the characterization of different Actinobacteria assemblages according to contamination type revealed the ecological importance of Actinobacteria for maintaining both general biogeochemical functions through a “core” Actinobacteria community and specific roles associated with the presence of contaminants. Indeed, the results allowed to distinguish Actinobacteria genera and species operational taxonomic units (OTUs) able to cope with the presence of either (i) As, (ii) metals Ni, Fe, V, Cr, and Mn, or (iii) polycyclic aromatic hydrocarbons (PAHs) and toxic metals (Hg, Cd, Cu, Pb, and Zn). Such observations highlighted the metabolic capacities of Actinobacteria and their potential that should be taken into consideration and advantage during the implementation of bioremediation processes in marine ecosystems.
显示更多 [+] 显示较少 [-]Rescheduling the process of nanoparticle removal used for water mercury remediation can increase the risk to aquatic organism: evidence of innate immune functions modulation in European eel (Anguilla anguilla L.)
2015
Costa, Leonor C. | Mohmood, Iram | Trindade, Tito | Saleem, Mohammad | Duarte, Armando C. | Pereira, Eduarda | Aḥmad, Iqbāl
This study aimed to assess the mechanisms of innate immune function responses to silica-coated iron oxide nanoparticle functionalized with dithiocarbamate groups (IONP) exposure alone and its associated mercury (Hg) in European eel (Anguilla anguilla L.) phagocytes isolated from peritoneum (P-phagocytes), gill (G-phagocytes), head kidney (HK-phagocytes) and spleen (S-phagocytes). The study evaluated viability, phagocytosis, oxidative burst activity (OBA) and lipid peroxidation (LPO). Four groups were made: (1) 2 × 10⁶ phagocytes + RPMI-1640 (control), (2) 2 × 10⁶ phagocytes + IONP (2.5 mg L⁻¹), (3) 2 × 10⁶ phagocytes + Hg (50 μg L⁻¹) and (4) 2 × 10⁶ phagocytes + IONP + Hg. Samplings were performed at 0, 2, 4, 8, 16, 24, 48 and 72 h of exposure. A. anguilla P-, G-, HK- and S-phagocytes in vitro exposure to IONP alone revealed either increased (except HK-phagocytes at 16 h) or no change in viability, suggesting that the cells are metabolically active and resistant to IONP exposure alone. In terms of phagocytes overactivation and reactive oxygen species (ROS) production as an indirect mechanism of immunotoxicity, the phagocytes responded in the following manner: P- > S- > HK- = G-phagocytes for IONP exposure alone, S- > HK- > P- = G-phagocytes for Hg exposure alone and HK- > G- = S- > P-phagocytes for concomitant exposure. Overall, considering Hg as a surrogate for metals and its association with IONP, as well as the likelihood that it could pose a serious threat to aquatic organisms by modulating their immune defense mechanisms if accidentally discharged into the aquatic environment, current results suggest that the step of IONP–metal complex removal must not be underrated and should be processed without any more ado.
显示更多 [+] 显示较少 [-]Characterisation of CIME, an experimental chamber for simulating interactions between materials of the cultural heritage and the environment
2015
Chabas, A. | Fouqueau, A. | Attoui, M. | Alfaro, S. C. | Petitmangin, A. | Bouilloux, A. | Saheb, M. | Coman, A. | Lombardo, T. | Grand, N. | Zapf, P. | Berardo, R. | Duranton, M. | Durand-Jolibois, R. | Jerome, M. | Pangui, E. | Correia, J. J. | Guillot, I. | Nowak, Stefan
An approach consisting in combining in situ and laboratory experiments is often favoured for investigating the mechanisms involved in the weathering of the materials of the cultural heritage. However, the realistic simulation in the laboratory of the environmental conditions ruling the interactions of atmospheric compounds with materials is a very complex task. The aim of this work is to characterise CIME, a new chamber specially built to simulate the interactions between materials of the cultural heritage and the environment. The originality of this instrument is that beside the usual climatic parameters (temperature, relative humidity, solar radiation) and gaseous pollutants, it also allows the controlled injection of different types of particulate matter such as terrigenous, marine and anthropogenic. Therefore, varied realistic atmospheric environments (marine or urban) can be easily simulated within CIME. In addition to the technical description of CIME, this paper shows the first results obtained by the impact of gaseous pollutants on non-durable glass, bronze and limestone. The first experiments for the deposition of different particles (calcite, clays, soot and halite) are also presented.
显示更多 [+] 显示较少 [-]Residence time analysis of photochemical buildup of ozone in central eastern China from surface observation at Mt. Tai, Mt. Hua, and Mt. Huang in 2004
2015
Pochanart, Pakpong
Using data from surface observation, backward trajectories, and residence time analysis, the amounts of regional photochemical ozone buildup due to the large-scale anthropogenic sources in central eastern China (CEC, 30.5–40.5 N, 112.5–122.5 E) at Mt. Tai, Mt. Hua, and Mt. Huang in 2004 were quantified. It was found that the CEC anthropogenic sources influenced the air masses and the associated ozone production most at Mt. Tai, located at the center of CEC domain. At Mt. Hua to the west of CEC domain and at Mt. Huang to the south of CEC domain, the air masses and the associated ozone production showed less CEC anthropogenic influences on a regional scale. At Mt. Tai and Mt. Huang, the ozone mixing ratios in the air masses that passed over polluted source regions in CEC increased during the first 40–70 h after arrival and showed the highest production rate of 31.2 and 12.2 ppb/day, respectively, in May and June. It was estimated that the CEC anthropogenic sources contributed 34–42 % of ozone at Mt. Tai and 8–14 % at Mt. Huang during this ozone peak season. The large contributions from CEC sources during fall season (Sep–Nov) were also estimated as 31–44 and 17–23 % but with the lower ozone production rate of 22.6 and 8.4 ppb/day, respectively, for Mt. Tai and Mt. Huang.
显示更多 [+] 显示较少 [-]Toxicity of anthelmintic drugs (fenbendazole and flubendazole) to aquatic organisms
2015
Wagil, Marta | Białk-Bielińska, Anna | Puckowski, Alan | Wychodnik, Katarzyna | Maszkowska, Joanna | Mulkiewicz, Ewa | Kumirska, Jolanta | Stepnowski, Piotr | Stolte, Stefan
Flubendazole (FLU) and fenbendazole (FEN) belong to benzimidazoles—pharmaceuticals widely used in veterinary and human medicine for the treatment of intestinal parasites as well as for the treatment of systemic worm infections. In recent years, usage of these drugs increased, which resulted in a larger contamination of the environment and possible negative effects on biota. Hence, in our research, we investigated an aquatic ecotoxicity of these pharmaceuticals towards: marine bacteria (Vibrio fischeri), green algae (Scenedesmus vacuolatus), duckweed (Lemna minor) and crustacean (Daphnia magna). Ecotoxicity tests were combined with chemical analysis in order to investigate the actual exposure concentration of the compounds used in the experiment as well as to stability and adsorption studies. As a result, study evaluating sensitivity of different aquatic organisms to these compounds and new ecotoxicological data is presented. The strongest negative impact of FLU and FEN was observed to D. magna.
显示更多 [+] 显示较少 [-]Effects of Ni stress on the uptake and translocation of Ni and other mineral nutrition elements in mature wheat grown in sierozems from northwest of China
2015
Wang, Yu | Wang, Shengli | Nan, Zhongren | Ma, Jianmin | Zang, Fei | Chen, Yazhou | Li, Yepu | Zhang, Qian
Effects of heavy metal on uptake of mineral nutrition elements in plants have attracted widespread interest and been widely explored. This paper reports the translocation and accumulation behaviors of Ni in the organs of mature wheat plants by means of pot experiment using the sierozem collected from northwestern China as experimental soil. Effect of Ni on accumulation of Cu, Mn, Ca, and Mg is also demonstrated. It was found that influence of Ni on wheat plants differed greatly at different Ni levels. Ni content in the organs of wheat plants increased with the increase in Ni level, and the increasing rate decreased when the Ni level was higher than 400 mg/kg. Ni was mainly accumulated in the roots and less distributed in the shoots, shells, and grains. When the Ni level was lower than 400 mg/kg, the bioconcentration factor (BCF) of the roots was higher than 1, suggesting that Ni was taken in against a concentration gradient. The average translocation factor (TF) of wheat plants was 0.221, indicating the weak ability of wheat plants in translocating Ni toward the aboveground parts. Since Ni is readily accumulated in the grains of wheat plants at lower Ni level, concerns in health risks might be raised. Excess Ni in wheat plants could inhibit the transfer of Cu, Mn, and Mg to grains, leading to the accumulation of Ca, Mg, and Mn in the shoots and shells of wheat plants. The increase in Ni content can disturb the uptake and distribution of mineral nutrition elements in the organs of plants, resulting in the toxic effect of Ni on wheat plants. Results from this study provide a scientific support to prevent or control heavy metal pollution in an arid region.
显示更多 [+] 显示较少 [-]Optimization of growth conditions for laboratory and field assessments using immobilized benthic diatoms
2015
Vidal, Tânia | Marques, Catarina | Abrantes, Nelson | Pereira, Joana Luísa | Soares, Amadeu M. V. M. | Gonçalves, Fernando
The availability of rapid and effective methodologies for assessing lotic systems with microphytobenthos is still quite scarce. Hence, the primary goal of this study was to optimize the growth conditions of the sensitive and ubiquous benthic diatom Navicula libonensis for laboratorial and field assessments. The effect of different conditions of temperature, photoperiod, initial cell density, test duration and cell encapsulation into calcium alginate beads was evaluated in a first set of experiments. There was a slight increase in the growth of free and immobilized cells at 23 °C, at lower initial cell densities and at the shortest experimental period (6 days). Through all the conditions, the growth profiles of free versus immobilized were fairly variable. A second experimental trial involved the validation of selected conditions, applied to the ecotoxicological testing of N. libonensis to two reference chemicals—3,5-dichlorophenol and potassium dichromate. A similar response of free and immobilized cells was observed between exposures to spiked stream water and synthetic medium, and through the conditions tested. This outcome suggests that N. libonensis may potentially provide reliable responses under direct in situ exposures.
显示更多 [+] 显示较少 [-]Differential responses of C3 and CAM native Brazilian plant species to a SO2- and SPMFe-contaminated Restinga
2015
da Silva, Luzimar Campos | de Araújo, Talita Oliveira | Martínez, Carlos Alberto | de Almeida Lobo, Francisco | Azevedo, Aristéa Alves | Oliva, Marco Antonio
Aiming to evaluate responses in terms of growth rates, physiological parameters, and degree of sensitivity to SO₂ and SPMFₑ in Eugenia uniflora L. (Myrtaceae, a C₃ species) and Clusia hilariana Schlecht (Clusiaceae, a CAM species); saplings were exposed to emissions from a pelletizing factory for 7 months. The species were distributed along a transect (200, 500, 800, 1400, and 1700 m away from the emission source), and analyses were performed after 71, 118, and 211 days of exposure to the pollutants. E. uniflora received higher superficial deposition of particulate iron. The highest total iron foliar contents were observed 200 m away from the emission source in both plant species, while the highest total sulfur foliar contents were observed 200 m away in C. hilariana and 800 m away in E. uniflora. E. uniflora presented decreased values of height growth rate, number of necrotic leaves, chlorophyll analysis (SPAD index) and transpiration, in relation to the distances from the emission source. C. hilariana showed decreased values of height growth rate, number of leaves, number of necrotic leaves, total ionic permeability, stomatal conductance, transpiration, net CO₂ assimilation, and total dry matter, in relation to distances from the emission source. In relation to the days of exposure, both species presented increased number of necrotic leaves and foliar phytotoxicity index, and decreased values in the chlorophyll analysis. The two native plant species, both of which occur in the Brazilian Restinga, showed damage when exposed to emissions from an iron ore pelletizing factory. C. hilariana was considered the most sensitive species due to the decreased values in a higher number of variables after exposition.
显示更多 [+] 显示较少 [-]Rice management interventions to mitigate greenhouse gas emissions: a review
2015
Hussain, Saddam | Peng, Shaobing | Shah, Fahad | Abdul Khaliq, | Huang, Jianliang | Cui, Kehui | Nie, Lixiao
Global warming is one of the gravest threats to crop production and environmental sustainability. Rice, the staple food of more than half of the world’s population, is the most prominent cause of greenhouse gas (GHG) emissions in agriculture and gives way to global warming. The increasing demand for rice in the future has deployed tremendous concerns to reduce GHG emissions for minimizing the negative environmental impacts of rice cultivation. In this review, we presented a contemporary synthesis of existing data on how crop management practices influence emissions of GHGs in rice fields. We realized that modifications in traditional crop management regimes possess a huge potential to overcome GHG emissions. We examined and evaluated the different possible options and found that modifying tillage permutations and irrigation patterns, managing organic and fertilizer inputs, selecting suitable cultivar, and cropping regime can mitigate GHG emissions. Previously, many authors have discussed the feasibility principle and the influence of these practices on a single gas or, in particular, in the whole agricultural sector. Nonetheless, changes in management practices may influence more than one gas at the same time by different mechanisms or sometimes their effects may be antagonistic. Therefore, in the present attempt, we estimated the overall global warming potential of each approach to consider the magnitude of its effects on all gases and provided a comprehensive assessment of suitable crop management practices for reducing GHG emissions in rice culture.
显示更多 [+] 显示较少 [-]