细化搜索
结果 241-250 的 567
GIS-Based Mapping of the Water Quality and Geochemical Assessment of the Ionic Behavior in the Groundwater Aquifers of Middle Ganga Basin, Patna, India
2024
Mohammad Masroor Zafar, Mohammed Aasif Sulaiman and Anupma Kumari
The study implemented Geographic Information System (GIS) techniques and multivariate hydrogeochemical analysis to evaluate the spatial-temporal and seasonal variation in the groundwater quality of Patna, India. For this purpose, sixty groundwater samples were collected and analyzed for major anions and cations during the pre-monsoon, monsoon, and post-monsoon seasons of 2019-2020. The physicochemical parameters such as pH, EC (Electrical Conductivity), TDS (Total Dissolved Solids), TH (Total Hardness), Ca2+, Mg2+, Na+, K+, HCO3-, Cl-, SO42- were considered to evaluate the water quality index. The result revealed degradation in groundwater quality from pre-monsoon (49.21) to post-monsoon (74.48). EC, TDS, TH, Mg2+, Na+, Ca2+, K+, and HCO3- ions were found accountable for high WQI values at various sampling sites during different seasons. Spatial maps showed that 45 % of the sampling stations exhibited poor quality in all three seasons, where the eastern part of the studied region was revealed to be the most affected area. The application of multivariate statistical methods and hydrogeochemical investigation has clearly defined the dominant role of the weathering process, and reverse ion exchange mechanism in controlling the aquifer’s ionic chemistry. Moreover, poor seepage system, and waste leachate from the surface have been found as the main cause of high levels of Na+, K+, and Cl- in the eastern part of Patna.
显示更多 [+] 显示较少 [-]Assessment of Microplastic Pollution in Fresh Fish and Pindang Fish and its Potential Health Hazards in Coastal Communities of Banyuwangi Regency, Indonesia
2024
Lilis Sulistyorini, Novi Dian Arfiani, Muhammad Addin Rizaldi, Leka Lutpiatina and Nurul Izzah Abdul Samad
This study aimed to analyze the microplastic contamination of fresh and pindang fish and its health impact on the coast of Muncar, Banyuwangi Regency, Indonesia. In this study, a total of 115 respondents participated, providing questionnaire data on their fish consumption habits and health problems. Subsequently, spearman’s correlation coefficient, a non-parametric statistical test, was used to analyze the questionnaire data. This study also included 100 samples of marine fish, consisting of 89 fresh fish and 11 pindang fish from various types of marine species. The content of microplastic polymers detected through FTIR (Fourier-Transform Infrared Spectroscopy) was around 3-5 microplastic polymers/fish samples, and the most dominant were Polyethylene, Polyester, Polycaprolactam (Nylon 6) and Polyamide. This study showed that 94 percent of fish samples contained microplastics and only 6 percent of samples did not contain microplastics. The intensity of pindang fish consumption was positively correlated with respondents’ health symptoms and problems. Subsequently, implementing effective waste management systems and educational programs in the coastal areas is crucial in reducing the pollution of seawater resulting from inadequate waste disposal practices.
显示更多 [+] 显示较少 [-]Green Nanotech: A Review of Carbon-Based Nanomaterials for Tackling Environmental Pollution Challenges
2024
Rameeja Shaik, Buddhadev Ghosh, Harish Chandra Barman, Arijit Rout and Pratap Kumar Padhy
In recent times, nanotechnology has experienced widespread acclaim across diverse sectors, including but not limited to tissue engineering, drug delivery systems, biosensors, and the mitigation and monitoring of environmental pollutants. The unique arrangement of carbon atoms in sp3 configurations within carbon nanomaterials endows them with exceptional physical, mechanical, and chemical characteristics, driving them to the forefront of materials research. Their appeal lies in their efficacy as superior adsorbents and their exceptional thermal resistance, making them versatile in various applications. The present review extensively explores a range of carbon-based nanomaterials, delving into their synthesis methods and examining their multifaceted applications in addressing environmental pollutants. It is crucial to emphasize that the popularity of carbon-based nanomaterials arises from their potential to serve as superior adsorbents, coupled with their outstanding thermal resistance properties. These attributes contribute to their applicability in diverse environmental contexts. Looking ahead, carbon-based nanomaterials are poised to emerge as environmentally friendly and cost-effective materials, representing promising and potential avenues for the advancement of sustainable technology.
显示更多 [+] 显示较少 [-]Assessing Heavy Metal Accumulation in Urban Plants: Implications for Environmental Health and Traffic-Related Pollution in Al-Diwaniyah City, Iraq
2024
Luma Abdalalah Sagban Alabadi, Wafaa Sahib Abbood Alawsy and Dunya A. AL-jibury
This study aimed to compare the ability of five plant species, including (Conocarpus erectus, Acacia sensu lato (s.l.), Melaleuca viminalis, Dodonaea viscosa and Lantana camara) to absorb and accumulate heavy elements in their tissues, which were grown in the central islands in the city of Diwaniyah. This included areas of street in front of the medical college, Umm Al Khail First Street, Umm Al-Khail Street, near Abbas Attiwi Bridge, Al-Adly Street in the Euphrates District, and Clock Field Street, respectively. Results showed that soil samples S1 and S3 were contaminated by Pb, and the rest of the sites were contaminated with nickel only. This indicates through the table findings a rise in these heavy metals’ concentrations with a rise in traffic momentum. Thus, the Pb concentrations in the growing plants’ shoot parts with respect to this research had surpassed the allowed critical limit of 5.00 mg.kg-1 dry matter, in which the highest value was recorded at the site with respect to S3 as well as S2. Meanwhile, the findings indicate that Cd concentrations in S3 and S1 had increased and exceeded the allowable limit of 0.20 mg.kg-1 dry matter. In the meantime, the nickel concentrations were within the permissible limits of 67.90 mg.kg-1 dry matter. The Zn concentration exceeded the permitted limits of 60.00 mg.kg-1 dry matter except for plants (Acacia s.l. and Lantana camara) in sites S5 and S2. The results confirmed that the values of Heavy Metals Bioaccumulation Coefficient (BAC) for most of the study elements had recorded the highest value in the Dodonaea plant for Zn, Cd, and Pb, except for Ni. It was more accumulated in the Melaleuca viminalis plant, which indicates the superiority of the Dodonaea plant in accumulating Pb, Cd, and Zn over the rest of the study plants, as they took the following order: Lantana camara < Acacia s.l. < Conocarpus erectus < Melaleuca viminalis < Dodonaea viscosa. The best plants accumulated nickel in the following order: Acacia s.l. < Lantana camara < Conocarpus erectus < Dodonaea viscosa < Melaleuca viminalis.
显示更多 [+] 显示较少 [-]Combined Application of Biochar and Silicon Fertilizer for Improved Soil Properties and Maize Growth
2024
Muhammad Wasil Bin Abu Bakar, M. K. Uddin, Susilawati Kasim, Syaharudin Zaibon, S. M. Shamsuzzaman, A. N. A. Haque and A. Reza
Biochar can be a good soil amendment to reduce the soil pH, increase crop growth rate, and improve the efficient use of fertilizer. Other than that, silicon fertilizer also would promote photosynthetic ability on plant development that would help to produce high yield. In this work, a series of experiments was conducted to observe the effect of rice husk biochar and silicon fertilizer on the maize growth rate and soil pH. A 45-day pot experiment in the greenhouse with three replicates of 9 experimental treatment combinations of RHB at two rates (5 and 2.5 t.ha-1) with silicon fertilizer at three rates (125%, 100%, 75%), sole biochar (10 t.ha-1), sole silicon fertilizer (100%) and control (NPK) to observe the best rate and combination to improve growth rate and change in soil chemical in acid soil. The result showed that the co-application of sole biochar and biochar with Silicon significantly improved growth development, increased photosynthesis rate, altered soil pH, and reduced Fe concentration compared to control. The plant height increased 88.35% from T4 (5 t.ha-1 RHB + 100% Si) compared to the control and the conductance was higher in T4 (0.53) followed by T8 (0.438) while T1 (0.071) recorded the lowest conductance. The shoot fresh weight was higher in T4 (127.83 g) followed by T8 (57.14 g). However, the weight increased by 343.7% at T4 followed by T8 (2.5 t.ha-1 RHB + 75% Si) at 98.33%. The highest pH increment of 1.24 units (T1 = 5.53, T4 = 6.77) of soil pH was noted from T4 (5 t.ha-1 RHB + 100% Si) compared to control (NPK), and the highest total Fe in soil was observed from T1 (442.30 mg.kg-1). The current study results showed that T4 (50% RHB + 100% Silicon) was the best treatment over the other rates of RHB and silicon increased plant height, photosynthetic rate, and biomass.
显示更多 [+] 显示较少 [-]Nitrogen Nutrition-Induced Changes in Macronutrient Content and Their Indirect Effect on N-Metabolism Via an Impact on Key N-Assimilating Enzymes in Bread Wheat (Triticum aestivum L.)
2024
Vandna, Vasundhara Sharma, Kalidindi Usha, Dalveer Singh, Ranjan Gupta, V. K. Gupta and Bhupinder Singh
Judicious application of nitrogen (N) fertilizers in crop production is critical for reducing the nitrate pollution of groundwater and greenhouse gas emissions. It is, thus, important to improve the nitrogen use efficiency under the reduced application of nitrogen. A genotypic variation in N-uptake and N-use efficiency particularly under low N-input conditions exists across crops that can be deciphered and exploited for environmentally sustainable farming without any significant penalty of yield and quality. The present research conducted under the nutrient solution culture aimed to explore the inherent variability in the growth response of ten genetically diverse wheat varieties to low fertilizer N-application (N-, 10 μM N) in comparison to N sufficient control (N+, 8.5 mM N) viz., a viz., the activity of various key N-assimilating enzymes and to delineate the indirect effect of low N on uptake and partitioning of other major macronutrients viz., P, K, S, which may indirectly regulate the N-use efficiency. A notable increase in sulfur, potassium, and phosphorus content was observed under nitrogen-deficient conditions. Varieties such as Carnamah and HD 2824 exhibit a significant increase in shoot phosphorus content, emphasizing their potential to optimize phosphorus acquisition and utilization efficiency under nutrient-limited conditions. The findings highlight the complex interplay between nutrient availability and plant responses, showcasing varietal-specific adaptations to nitrogen limitations.
显示更多 [+] 显示较少 [-]Energy Intervention Model in Public Education Institutions that Contribute to Sustainable Development
2024
J. Velez-Ramos, D. Mayorga and F. Gonzalez
Sustainable development is a global policy that requires the collective effort of the actors present in each territory. In this sense, an energy renewal intervention model is presented at the Juan XXIII Educational Institution in the city of Monteria, Córdoba, Colombia, which results from alliances between international, national, and regional actors, becoming a reference that could serve as a basis. To be replicated in other institutions with characteristics similar to those described in this case. The model generally describes the entire process carried out in the intervention and focuses on the benefits generated for the educational community. Among the main results, the increase in thermal, lighting, and acoustic comfort of the educational community stands out, according to a survey and semi-structured interviews carried out. A fact that could be attributed to the perception of increased comfort in the community is the increase in the student population in 2022, going from 1,478 in 2019 to 1,909 in 2022, with a growth of approximately 29%. Energy renovation also resulted in the improvement of the indoor climate of the classrooms (from 35°C to 27°C), the improvement in the physical infrastructure of the institution, the integration of photovoltaic solar energy, and the subsequent reduction of energy cost.
显示更多 [+] 显示较少 [-]Survey and Characterization of Edible Fruit and Ethnomedicinal Trees in the Forest Landscape of Apayao Province
2024
Hannie T. Martin, Olivia C. Tomas, Ryan W. Gabit, Maria Christina Z. Manicad and David A. Rodolfo
This study was conducted in the six municipalities of Apayao Province, namely, Luna, Pudtol, Flora, Conner, Kabugao, and Calanasan. This aimed to survey and characterize the edible fruit and ethnomedicinal trees in the forest landscape of Apayao province. It determined the geographical location, morphological characteristics, ecological status, DNA sequencing, phytochemical contents, uses, and threats of the edible and ethnomedicinal trees in the forests of Apayao. The methods used were qualitative and quantitative research. Fifteen (15) edible and 10 ethnomedicinal trees were surveyed with sixteen (16) families were identified.Out of 25 edible and ethnomedicinal trees, the conservation status is endangered, threatened, rare, vulnerable, and least concerned. Out of 25 edible and ethnomedicinal fruit trees, most are with identity results that range from 93 to 100% identity. Flavonoids, tannins, and sapotin compounds are mostly present in edible and ethnomedicinal trees. The community members are using 15 different ethnomedicinal trees to address 32 health-related conditions. The results of the phytochemical analyses provide support evidence to support the traditional uses of ethnomedicinal trees. All surveyed trees are susceptible to pests, diseases, and destruction brought by natural phenomena such as the effect of climate change. A policy recommendation for the conservation and protection of edible and ethnomedicinal trees is then proposed.
显示更多 [+] 显示较少 [-]The Nexus Between Climate Variability and Undernutrition: A Systematic Review
2024
Niraj K.C. and Kuaanan Techato
Undernutrition is a confront to the health and output of the populace. It is viewed as one of the five leading contrary health impacts of climate variability and is defined as different measures of nutritional status. We aimed to assess the scientific evidence base for the impact of climate variability on childhood undernutrition (particularly wasting and underweight) in low- and middle-income countries. A systematic review was conducted to identify the peer-reviewed and gray full-text studies in English with no limits for the year of publication and study design. This review covers only published studies from four databases (PubMed, Scopus, Web of Science, and Science Direct). The risk of bias was assessed using the ROVBIS tool in individual studies. The PRISMA Statement checklist for systematic reviews was referred for this review process. A significant correlation between climate variables, temperature, rainfall, and drought, and at least one undernutrition parameter in 19 out of 22 studies was observed in this systematic review. In addition, we note that crop yield, maternal education, nutritional status of mothers, wealth status at the household level, and individual levels also play substantial roles in mediating the nutritional impacts. The findings of our analysis imply that exposure to climate variables may be linked to an increased risk of undernutrition both during and for several years following climate events. This may imply that undernutrition is never caused by temperature, precipitation, drought, or other weather-related factors alone but rather that undernutrition is triggered in children who are already at risk.
显示更多 [+] 显示较少 [-]Zinc and Boron Foliar Application Effects on Primed Mung Bean (Vigna radiata L.) Growth and Productivity
2024
Lalit Saini, Prasann Kumar and Hina Upadhyay
Mung bean is recognized for its abundant high-quality protein content. For human consumption, it is a high-quality protein source and also serves various purposes crops, its arvested residue is used for green manuring and also used for fodder purposes. The research aimed to assess the impact of foliar micronutrient application on primed mung bean (Vigna radiata). The experimental procedures were executed in the sandy loam soil prevalent in the central plain region of Punjab. The investigation was conducted during the Zaid season 2022, focusing on the (SML-1827) mung bean variety. Specifically, the research assessed the impact of foliar micronutrient applications involving zinc and boron at 15 and 45 days after sowing (DAS) on primed mung bean growth characteristics. The experimental design employed a Randomized Block Design, incorporating 11 distinct treatment combinations, each replicated thrice. The investigation revealed that foliar micronutrient treatment on primed mung bean substantially influenced growth and yield parameters. Growth indicators for mung bean exhibited a positive trend when zinc and boron were jointly applied to primed seeds with gibberellic acid, followed by a decline in the control group, which experienced typical growth conditions devoid of growth regulators and micronutrients. Specifically, the highest recorded plant height was 70.1 cm in the T9 (GA(50 mg.L-1) + ZnSO4 (0.5%) + B (1%)) treatment, while the lowest height was 58 cm in the T0 (control) treatment. Similarly, the most significant fresh weight was observed in T9 (GA(50 mg.L-1) + ZnSO4 (0.5%)+ B (1%)) treatments at 136.8 g, with the lowest weight recorded in T0 (control) treatments at 86.6g. the most significant grain yield was achieved in T9 112 g.m-2, followed by T10 (SA(150 mg.L-1)+ ZnSO4 (0.5%)+B (1%)) at 105.7 g.m-2. This study suggests micronutrients and growth regulators can be sustainable agricultural inputs to enhance soil health and productivity.
显示更多 [+] 显示较少 [-]