细化搜索
结果 241-250 的 401
Evaluation of Grid-Based Aridity Indices in Classifying Aridity Zones in Iraq
2024
Wisam Alawadi, Ayman Alak Hassan and Ammar Dakhil
In this study, the aridity index (AI) based on gridded climate data was validated for defining aridity and classifying aridity zones in Iraq through comparison with the results obtained by the station-based aridity index. Gauge-based gridded climate data taken from Climatic Research Unit Timeseries (CRU TS) were used to determine the annual value of four aridity indices (Lang, De Martonne, Ernic and UNEP AI) over the period 1998-2011. The results showed that the aridity distribution maps derived using grid-based aridity indices were reasonably close to those found using station-based ones. The four aridity indices properly identified similar aridity (dryness) classifications in both the station-based and grid-based aridity maps. The area percentage of each aridity class predicted by grid-based AIs was also compared with that obtained by the station-based AIs. The results showed that the variances between the area percentages predicted by grid-based AIs and those estimated using station-based AIs are fairly slight. The Lang AI exhibited the least variance (0.4%) while the De Martonne AI had the biggest variance (-4.8%). Despite these minor variances, it is however possible to conclude that the grid-based aridity index classified the aridity zones of Iraq as properly as the station-based aridity index did.
显示更多 [+] 显示较少 [-]Enhanced Natural Attenuation Technique, Edaphic and Microbiological Changes in Oil-Impacted Soil of Odhiaje Community, Rivers State
2024
P. N. Muonye and C. C. Nnaji
Oil spills in the Niger Delta could exert environmental pressures on the soil component. We investigated the impacts of oil spills and the effect of the Enhanced Natural Attenuation (ENA) remediation method on contaminated soil and resident microbial populations in the Odhiaje community in Rivers State, Nigeria. Soil samples for microbiological studies were collected weekly during a 17-week remediation period, while those for edaphic parameters were taken before and after remediation, all at 4 sampling points (SPs). Serial dilution of the oil-impacted soils for microbial density enumeration was carried out according to standard methods. Results revealed that mean concentrations of Total Petroleum Hydrocarbon Contents (THC) (Sig.value = 0.009), SO42- ions (Sig.value = 0.001), and sand compositions (Sig.value = 0.045) all differed markedly across the sampling points at p<0.05. Mean levels of EC (Sig.tvalue = 0.039) and ΣN (Sig.tvalue = 0.058) & K+ ions (Sig.tvalue = 0.004) differed significantly before and after the remediation exercise at the 95% confidence interval. Application of nutrients was rapidly accompanied by microbial population increases, leading to the consumption of oil contaminants in soils to levels comparable to control over the remediation period. Total Heterotrophic Bacteria counts correlated with pH (r = 0.501) and SO42- ions (r = 0.500) (p<0.05), and K+ ions (r = -0.800) (p<0.01); Total Heterotrophic Fungi correlated with pH (r = 0.520) (p<0.05), and Mg2+ ions (r = 0.820) (p<0.01); Hydrocarbon Utilizing Bacteria correlated with available P (r = 0.530) and silt composition (r = -0.504) (p<0.05), and K+ (r = 0.626) and Mg2+ ions (r = 0.733) (p<0.01); and Hydrocarbon Utilizing Fungi correlated with K+ (r = 0.500) & Mg2+ ions (r = 0.506) (p<0.05). Results indicate improvement in C/N ratios and effectiveness of the current cost-effective bioaugmentation technique in the restoration of arable soil productivity in the Odhiaje community.
显示更多 [+] 显示较少 [-]Presence of Heavy Metals in Purple Crab (Platyxanthus orbignyi) Tissues in Southern Peru
2024
José L. Ramos-Tejeda, José A. Valeriano-Zapana and Nilton B. Rojas-Briceño
Heavy metals (iron, copper, and zinc) were quantified in purple crab (Platyxanthus orbignyi) tissues collected in winter (September 2021), spring (November 2021), and summer (March 2022) at three beaches (Tres Hermanas, Fundición, and El Diablo) in Ilo Harbour (Moquegua), South Peru. The rank order of heavy metal concentrations in purple crab tissues and sediments was similar; iron (Fe) was followed by Copper (Cu), and this last one was followed by Zinc (Zn). The heavy metal concentrations in tissue crabs from the three beaches differed from each other spatially and seasonally. In addition, Fundición Beach was the zone with the highest concentration of those three metals during the summer.
显示更多 [+] 显示较少 [-]Response and Tolerance of Cyanobacterial Exopolysaccharides to Rice Field Herbicide 2,4-D
2024
Sukjailin Ryntathiang, Meguovilie Sachu and Mayashree B. Syiem
This study aimed to check how herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) affects the production of EPS and its composition, growth, and biomass, as well as morphology in a cyanobacterial species isolated from a rice field in Meghalaya, India. Compared to the control cells, the growth of the organism measured in terms of chlorophyll concentration increased after being exposed to 10 and 20 ppm 2,4-D. However, cultures treated with 30 and 40 ppm experienced a decrease in their growth. Likewise, the biomass content of the organism experienced a minuscule increase in content upon exposure to 10 and 20 ppm 2,4-D but was compromised upon exposure to higher doses. When exposed to 10 ppm, the total EPS content, which includes the RPS and CPS content, showed a substantial increase. Maximum EPS production was seen at 20 ppm 2,4-D. However, exposure to 30 and 40 ppm 2,4-D, EPS production in the organism experienced a significant reduction, respectively. All components of EPS, such as uronic acid, neutral sugar, and proteins, individually showed an increase in 10 and 20 ppm 2, 4-D. A similar trend was seen in the organism’s bio-flocculating activity, which increased when exposed to 10 and 20 ppm, respectively. However, this activity in cells exposed to 30 and 40 ppm 2,4-D was severely reduced. Not only the content of EPS but the rate of EPS production was also enhanced in lower concentrations of 2,4-D. Although exposure to 30 ppm 2,4-D, the rate of EPS production was not significantly compromised, 40 ppm exposure adversely affected the rate of EPS production. Furthermore, visualization using scanning electron microscopy revealed the morphological changes induced by the herbicide 2,4-D.
显示更多 [+] 显示较少 [-]Elucidating Mycotoxin-Producing Aspergillus Species in River Water: An Advanced Molecular Diagnostic Study for the Assessment of Ecological Health and Contamination Risk
2024
R. Ravikiran, G. Raghu and B. Praveen
The primary goal of this research is to isolate mycotoxin-producing fungus from the Nagavali River. Examining isolated fungi involved analyzing their mycelium growth on culture media and detailed microscopic inspection. We employed PCR analysis utilizing universal primers ITS1 and ITS4 to accurately identify the species. Furthermore, we sequenced the amplified ITS region and rigorously analyzed the sequences using NCBI-BLASTn and the ITS2 database. The analysis found a high 96.38% genetic similarity to the Aspergillus flavus strain, resulting in a 600-base pair fragment size. The sequence was given the accession number OR536222 in the NCBI GenBank database. Phylogenetic analysis was performed to ascertain the particular strain of A. flavus and its source. Remarkably, this analysis led to the identification of a single new strain gene, which represents a novel discovery in the field of fungal research. These results underscore the vital significance of molecular techniques in promptly and precisely identifying organisms. This research enhances our understanding of mycotoxin contamination in water, providing valuable insights to improve detection and prevention strategies. It accentuates the overarching importance of conserving our water resources and upholding ecological equilibrium, ultimately safeguarding the well-being of both humanity and the environment.
显示更多 [+] 显示较少 [-]Fabrication of Tin and Zinc Gas Diffusion Electrodes for Electrochemical Reduction of Carbon Dioxide
2024
R. M. H. H. Jayarathne, A. R. Nihmiya, A. H. L. R. Nilmini and P. K. D. D. P. Pitigala
This study explores the electrochemical reduction of carbon dioxide (CO2) using tin (Sn) and zinc (Zn) catalyst-loaded gas diffusion electrodes (GDEs). The research explores the influence of electrolytic potential and catalyst loading on the efficiency of CO2 conversion to valuable chemicals, specifically formic acid and carbon monoxide. The best Sn loading for Sn-loaded GDEs, according to the morphological study, is 7 mg.cm-2, which results in higher current density (0.33 mA.cm-2) and current efficiency (36%). An electrolytic potential of -1.3 V Vs. Ag/AgCl is identified as optimal for Sn GDEs, offering a balance between high current efficiency (35%) and controlled current density. For Zn-loaded GDEs, an optimal loading of 5 mg.cm²- yields the highest current efficiency of 19.4% and a peak current density of 0.28 mA.cm²- at an electrolytic potential of -1.55 V Vs. Ag/AgCl, in addition to highlighting the crucial role that catalyst loading and electrolytic potential play in enhancing CO2 reduction efficiency, this research offers insightful information for environmentally friendly CO2 conversion technology.
显示更多 [+] 显示较少 [-]Forensic Identification and Isolation of Pathogenic Bacteria From Raw Vegetables and Fruits
2024
Anuradha Sharma and Sakshi Manhas
The consumption of contaminated fruits and vegetables is the prime cause of outbreaks of various human diseases. Although fruits and vegetables have high nutritional value, today because of their contamination during handling while performing harvesting and post-harvesting techniques, they are harmful to human health. Most of them are eaten raw without being washed or without providing any treatment. Vegetables and fruits, being rich nutritional sources, can act as carriers or vectors of pathogenic microorganisms, which can create a serious issue for the health of the community targeted. This entire research is based on an emerging field of Forensic Microbiology. Various types of microbial agents can be utilized as bioweapons to conduct the bio crime or bioterrorism through food and water. This research also represents that the identification of microbial agents is very much necessary for the welfare of humans. Identification and isolation of different pathogenic bacteria from raw vegetables and fruits can also shed some light on the terms of the necessity of Forensic Microbiology.
显示更多 [+] 显示较少 [-]Total Soluble Protein Mediated Morphological Traits in Mustard Treated with Thiourea and Salicylic Acid
2024
Shipa Rani Dey, Prasann Kumar and Joginder Singh
The total soluble protein-mediated morphological traits in mustard treated with Thiourea and Salicylic acid were investigated. In addition, it tested the hypothesis that the growth regulator salicylic acid protects the photosynthetic apparatus by up-regulating morphological traits. Under natural environmental conditions, seeds were sown in the field, and seed emergence was recorded. For three days after the 15-day stage, plants in the area were treated with thiourea and salicylic acid and allowed to grow for 90 days. Plants were harvested to assess various morphological traits. A follow-up application of SA and Thiourea plants improved plant height, leaf area, internodal length, leaf number, and accelerated plant activity. The up-regulation of morphological traits may have occurred in SA and Thiourea-mediated plants. After treatments, the level of total soluble protein was estimated in the leaves at proposed day intervals.
显示更多 [+] 显示较少 [-]Hydrogen Sulfide Oxidizing Microbiome in Biogas-Stream Fed Biofilter in Palm Oil Factory
2024
Siriorn Boonyawanich, Peerada Prommeenate, Sukunya Oaew, Nipon Pisutpaisal and Saowaluck Haosagul
Hydrogen sulfide (H2S) is highly corrosive to electric generators, which is the main problem of biogas utilization. The industrial scale of the biofilter system relies on the performance of sulfide-oxidizing bacteria (SOB) via the activity of sulfur oxidation (soxABXYZ) and flavocytochrome sulfide dehydrogenase (fccAB) enzymes to reduce to a concentration below 100 ppm before using in industrial machinery. The main purpose of this research is to investigate the SOB community in full-scale H2S removal and their gene expression (fccAB and soxABXYZ) associated with H2S elimination efficiency. In this study, SOB communities were obtained from 2 sampling sites of the full-scale biofilter of palm oil factory (PPG), comprising starting sludge (PPG1) and recirculating sludge (PPG2). The abundance of SOB strains was examined by next-generation sequencing analysis (NGS) based on the 16S rRNA gene. The changes in the expression of genes involved in sulfur oxidation, namely soxABXYZ, and fccAB, between the 2 sampling sites were evaluated by using a comparative genomic hybridization (CGH) microarray. The results indicate that the high abundance of SOB genera that could play a vital role in biofilters belonged mainly to Sulfurovum, Paracoccus, Acidihalobacter, Acidithiobacillus, Thioalkalispira, Thiofaba, Caldisericum, Bacillus, were rapidly increased in the biofilter tank. Interestingly, expressions of soxAXYZ gene cluster at PPG2 were increased in Paracoccus pantotrophus J40 and Paracoccus alkenifer DSM 11593 for 1.1188 and 1.0518-fold, respectively, while in Acidihalobacter prosperus F5, the expression of fccAB genes was up to 1.3704 fold in comparison with PPG1. Increasing both relative abundance and gene expressions at PPG2 were correlated with 95% H2S removal efficiency. Hence, stabilization of the SOB microbiome is vital to H2S removal in industrial-scale biogas applications.
显示更多 [+] 显示较少 [-]A Novel Coal-Associated Soil as an Effective Adsorbent for Reactive Blue Dye Removal
2024
T. R. Sundararaman, M. Millicent Mabel and G. Carlin Geor Malar
The project aims to remove reactive blue dye from the effluent of textile industries by utilizing coal-associated soil as an adsorbent, as it possesses effective physical properties and distinguishing characteristics. In comparison to other separation techniques, the adsorption method is the most effective, cost-effective, and straightforward. A batch adsorption investigation was carried out to examine the various adsorption-influencing factors, including solution pH, adsorbent dosage, contact time, temperature, and dye concentration. Contact time of 30 min, an adsorbent dosage of 10g.100 mL-1, a solution pH of 7, a temperature of 30°C, and an initial dye concentration of 100 mg.L-1 were found to be optimal for dye adsorption. Using two distinct kinetic models, the evaluation of kinetic studies revealed that the pseudo-second-order provided the greatest fit, with a higher R2 value than the pseudo-first-order. The thermodynamic parameters Gibbs free energy (ΔG°), entropy (ΔS°), and enthalpy (ΔH°) indicated that the current adsorption system was exothermic and spontaneous. Further study of the adsorption isotherm revealed that the Langmuir isotherm model provided the best fit, with an R2 value of 0.977%.
显示更多 [+] 显示较少 [-]