细化搜索
结果 251-260 的 4,042
Temporal changes of radiocesium in irrigated paddy fields and its accumulation in rice plants in Fukushima 全文
2016
Yang, Baolu | Onda, Yūichi | Wakiyama, Yoshifumi | Yoshimura, Kazuya | Sekimoto, Hitoshi | Ha, Yiming
About half of the total paddy field area, which is the dominant agricultural land in Fukushima Prefecture, was contaminated by radiocesium released by the Fukushima Daiichi Nuclear Power Plant accident. In this study, we investigated the temporal changes of radiocesium in soil, irrigation water, and rice plant in two adjacent rice paddies, with and without surface-soil-removal, in Fukushima Prefecture for over three years (2012–2014) after the nuclear accident. Our results showed that radiocesium migrated into 24–28 cm soil layers and that the activity concentration of radiocesium in paddy soils showed a significant reduction in 2014. The newly added radiocesium to paddies through irrigation water contributed only a maximum value of 0.15% and 0.75% of the total amount present in control and decontaminated paddies, respectively, throughout the study period. The radiocesium activity concentration in suspended sediment in irrigation water exponentially decreased, and the effective half-lives (Teff) for ¹³⁷Cs and ¹³⁴Cs were 1.3 and 0.9 years, respectively. Additionally, the average suspended sediment concentration in irrigation water increased between 2012 and 2014, suggesting that enhanced soil erosion had occurred in the surrounding environment. Radiocesium accumulation in rice plant also decreased with time in both paddies. However, the concentration ratio of radiocesium for rice plant in the decontaminated paddy increased compared with control paddy, despite approximately 96% of fallout radiocesium removed in paddy soil. Further analysis is required to clarify the reasons of high concentration ratio of radiocesium for rice plant in the decontaminated paddy.
显示更多 [+] 显示较少 [-]Characterization of phenol and cresol biodegradation by compound-specific stable isotope analysis 全文
2016
Wei, Xi | Gilevska, Tetyana | Wetzig, Felix | Dorer, Conrad | Richnow, Hans-Hermann | Vogt, Carsten
Microbial degradation of phenol and cresols can occur under oxic and anoxic conditions by different degradation pathways. One recent technique to take insight into reaction mechanisms is compound-specific isotope analysis (CSIA). While enzymes and reaction mechanisms of several degradation pathways have been characterized in (bio)chemical studies, associated isotope fractionation patterns have been rarely reported, possibly due to constraints in current analytical methods. In this study, carbon enrichment factors and apparent kinetic isotope effects (AKIEc) of the initial steps of different aerobic and anaerobic phenol and cresols degradation pathways were analyzed by isotope ratio mass spectrometry connected with liquid chromatography (LC-IRMS). Significant isotope fractionation was detected for aerobic ring hydroxylation, anoxic side chain hydroxylation, and anoxic fumarate addition, while anoxic carboxylation reactions produced small and inconsistent fractionation. The results suggest that several microbial degradation pathways of phenol and cresols are detectable in the environment by CSIA.
显示更多 [+] 显示较少 [-]Seasonal variation and partitioning of endocrine disrupting chemicals in waters and sediments of the Pearl River system, South China 全文
2016
Gong, Jian | Duan, Dandan | Yang, Yu | Ran, Yong | Chen, Diyun
Endocrine disrupting chemicals (EDCs) were seasonally investigated in surface water, suspended particulate matter, and sediments of the Pearl River Delta (PRD), South China. EDC concentrations in the surface water were generally higher in the summer than in winter. The surface water in the investigated rivers was heavily contaminated by the phenolic xenoestrogens. Moreover, the in-situ log Ksoc and log Kpoc values and their regression with log Kow in the field experiments suggest that binding mechanisms other than hydrophobic interaction are present for the sedimentary organic carbon and particulate organic carbon (SOC/POC). The logKsoc–logKow and logKpoc–logKow regression analyses imply that higher complexity of nonhydrophobic interactions with EDCs is present on the SOC samples comparing with the POC samples, which is related to their different sources.
显示更多 [+] 显示较少 [-]Improving the ecological relevance of toxicity tests on scleractinian corals: Influence of season, life stage, and seawater temperature 全文
2016
Hédouin, Laetitia S. | Wolf, Ruth E. | Phillips, Jeff | Gates, Ruth D.
Metal pollutants in marine systems are broadly acknowledged as deleterious: however, very little data exist for tropical scleractinian corals. We address this gap by investigating how life-history stage, season and thermal stress influence the toxicity of copper (Cu) and lead (Pb) in the coral Pocillopora damicornis. Our results show that under ambient temperature, adults and larvae appear to tolerate exposure to unusually high levels of copper (96 h-LC50 ranging from 167 to 251 μg Cu L−1) and lead (from 477 to 742 μg Pb L−1). Our work also highlights that warmer conditions (seasonal and experimentally manipulated) reduce the tolerance of adults and larvae to Cu toxicity. Despite a similar trend observed for the response of larvae to Pb toxicity to experimentally induced increase in temperature, surprisingly adults were more resistant in warmer condition to Pb toxicity. In the summer adults were less resistant to Cu toxicity (96 h-LC50 = 175 μg L−1) than in the winter (251 μg L−1). An opposite trend was observed for the Pb toxicity on adults between summer and winter (96 h-LC50 of 742 vs 471 μg L−1, respectively). Larvae displayed a slightly higher sensitivity to Cu and Pb than adults. An experimentally induced 3 °C increase in temperature above ambient decreased larval resistance to Cu and Pb toxicity by 23–30% (96 h-LC50 of 167 vs 129 μg Cu L−1 and 681 vs 462 μg Pb L−1).Our data support the paradigm that upward excursions in temperature influence physiological processes in corals that play key roles in regulating metal toxicity. These influences are more pronounced in larva versus adult corals. These findings are important when contextualized climate change-driven warming in the oceans and highlight that predictions of ecological outcomes to metal pollutants will be improved by considering environmental context and the life stages of organism under study.
显示更多 [+] 显示较少 [-]Effects of myclobutanil on soil microbial biomass, respiration, and soil nitrogen transformations 全文
2016
Ju, Chao | Xu, Jun | Wu, Xiaohu | Dong, Fengshou | Liu, Xingang | Zheng, Yongquan
A 3-month-long experiment was conducted to ascertain the effects of different concentrations of myclobutanil (0.4 mg kg⁻¹ soil [T1]; 1.2 mg kg⁻¹ soil [T3]; and 4 mg kg⁻¹ soil [T10]) on soil microbial biomass, respiration, and soil nitrogen transformations using two typical agricultural soils (Henan fluvo-aquic soil and Shanxi cinnamon soil). Soil was sampled after 7, 15, 30, 60, and 90 days of incubation to determine myclobutanil concentration and microbial parameters: soil basal respiration (RB), microbial biomass carbon (MBC) and nitrogen (MBN), NO−3–N and NH+4–N concentrations, and gene abundance of total bacteria, N2-fixing bacteria, fungi, ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB). The half-lives of the different doses of myclobutanil varied from 20.3 to 69.3 d in the Henan soil and from 99 to 138.6 d in the Shanxi soil. In the Henan soil, the three treatments caused different degrees of short-term inhibition of RB and MBC, NH+4–N, and gene abundance of total bacteria, fungi, N2-fixing bacteria, AOA, and AOB, with the exception of a brief increase in NO−3–N content during the T10 treatment. The MBN (immobilized nitrogen) was not affected. In the Shanxi soil, MBC, the populations of total bacteria, fungi, and N2-fixing bacteria, and NH+4–N concentration were not significantly affected by myclobutanil. The RB and MBN were decreased transitorily in the T10 treatment. The NO−3–N concentrations and the abundance of both AOA and AOB were erratically stimulated by myclobutanil. Regardless of whether stimulation or suppression occurred, the effects of myclobutanil on the two soil types were short term. In summary, myclobutanil had no long-term negative effects on the soil microbial biomass, respiration, and soil nitrogen transformations in the two types of soil, even at 10-fold the recommended dosage.
显示更多 [+] 显示较少 [-]Effect of heavy metals on seed germination and seedling growth of common ragweed and roadside ground cover legumes 全文
2016
Bae, Jichul | Benoit, Diane L. | Watson, Alan K.
In southern Québec, supplement roadside ground covers (i.e. Trifolium spp.) struggle to establish near edges of major roads and thus fail to assist turf recruitment. It creates empty niches vulnerable to weed establishment such as common ragweed (Ambrosia artemisiifolia). We hypothesized that heavy metal stresses may drive such species shifts along roadside edges. A growth chamber experiment was conducted to assess effects of metals (Zn, Pb, Ni, Cu, and Cd) on germination and seedling behaviors of roadside weed (A. artemisiifolia) and ground cover legumes (Coronilla varia, Lotus corniculatus, and Trifolium arvense). All metals inhibited T. arvense germination, but the effect was least on A. artemisiifolia. Low levels of Pb and Ni promoted germination initiation of A. artemisiifolia. Germination of L. corniculatus was not affected by Zn, Pb, and Ni, but inhibited by Cu and Cd. Germination of C. varia was decreased by Ni, Cu, and Cd and delayed by Zn and Pb. Metal additions hindered seedling growth of all test species, and the inhibitory effect on the belowground growth was greater than on the aboveground growth. Seedling mortality was lowest in A. artemisiifolia but highest in T. arvense when exposed to the metal treatments. L. corniculatus and C. varia seedlings survived when subjected to high levels of Zn, Pb, and Cd. In conclusion, the successful establishment of A. artemisiifolia along roadside edges can be associated with its greater tolerance of heavy metals. The findings also revealed that L. corniculatus is a potential candidate for supplement ground cover in metal-contaminated roadside edges in southern Québec, especially sites contaminated with Zn and Pb.
显示更多 [+] 显示较少 [-]Sterol ratios as a tool for sewage pollution assessment of river sediments in Serbia 全文
2016
Matić Bujagić, Ivana | Grujić, Svetlana | Jauković, Zorica | Laušević, Mila
In this work, source pollution tracing of the sediments of the Danube River and its tributaries in Serbia was performed using sterol ratios. Improved liquid chromatography-tandem mass spectrometry method, which enabled complete chromatographic separation of four analytes with identical fragmentation reactions (epicoprostanol, coprostanol, epicholestanol and cholestanol), was applied for the determination of steroid compounds (hormones, human/animal and plant sterols). A widespread occurrence of sterols was identified in all analyzed samples, whereas the only detected hormones were mestranol and 17α-estradiol. A human-sourced sewage marker coprostanol was detected at the highest concentration (up to 1939 ng g−1). The ratios between the key sterol biomarkers, as well as the percentage of coprostanol relative to the total sterol amount, were applied with the aim of selecting the most reliable for distinction between human-sourced pollution and the sterols originated from the natural sources in river sediments. The coprostanol/(cholesterol + cholestanol) and coprostanol/epicoprostanol ratios do not distinguish between human and natural sources of sterols in the river sediments in Serbia. The most reliable sterol ratios for the sewage pollution assessment of river sediments in the studied area were found to be coprostanol/(coprostanol + cholestanol), coprostanol/cholesterol and epicoprostanol/coprostanol. For the majority of sediments, human-derived pollution was determined. Two sediment samples were identified as influenced by a combination of human and natural biogenic sources.
显示更多 [+] 显示较少 [-]Hazard identification and risk characterization of bisphenols A, F and AF to aquatic organisms 全文
2016
Production of bisphenol A (BPA) analogues such as bisphenol F (BPF) and bisphenol AF (BPAF) has recently increased, due to clear evidence of adverse effects of BPA on humans and wildlife. Bisphenols (BPs) have already been released into aquatic environment without previous available information about potential adverse effects of BPs and their potential risk to aquatic ecosystems. In this study, lethal and sublethal effects of BPF and BPAF to bacteria, algae, crustacea and fish embryos were investigated and the results were compared to the adverse effects obtained for BPA. We found that BPAF was the most toxic compound to Daphnia magna, Danio rerio and Desmodesmus subspicatus; the lowest 72 h EC50 (median effective concentration) and 21 d NOEC (no observed effect concentration) values were determined at 2.2 mg/L regarding zebrafish hatching success and 0.23 mg/L of BPAF obtained for growth and reproduction of water fleas, respectively. In most cases, BPA was more toxic to D. magna, D. rerio and D. subspicatus in comparison to BPF, but pigmentation of zebrafish embryos after 48 h of exposure and reproduction of water fleas after 21-day D. magna reproductive test exposure to BPF were much more impaired. Risk quotients (measured environmental concentration/21 d NOEC) showed that BPA, BPF and BPAF are recently not chronically hazardous to the survival, reproduction and growth of water fleas in surface waters. On the other hand, we importantly show that currently present BPAF concentrations in surface waters could cause a potential ecological risk to aquatic organisms. In the near future, higher concentrations of BPF and BPAF in surface waters are anticipated and for this reason further testing using test systems with various aquatic species and endpoints are needed to provide additional information about toxic impacts of BPF and BPAF on aquatic biota.
显示更多 [+] 显示较少 [-]More than 500 million Chinese urban residents (14% of the global urban population) are imperiled by fine particulate hazard 全文
2016
He, Chunyang | Han, Lijian | Zhang, Robin Q.
China's urbanization and the subsequent public vulnerability to degenerated environment is important to global public health. Among the environmental problems, fine particulate (PM2.5) pollution has become a serious hazard in rapidly urbanizing China. However, quantitative information remains inadequate. We thus collected PM2.5 concentrations and population census records, to illustrate the spatial patterns and changes in the PM2.5 hazard levels in China, and to quantify public vulnerability to the hazard during 2000–2010, following the air quality standards of World Health Organization. We found that 28% (2.72 million km2) of China's territory, including 78% of cities (154 cities) with a population of >1 million, was exposed to PM2.5 hazard in 2010; a 15% increase (1.47 million km2) from 2000 to 2010. The hazards potentially impacted the health of 72% of the total population (942 million) in 2010, including 70% of the young (206 million) and 76% of the old (71 million). This was a significant increase from the 42% of total the population (279 million) exposed in 2000. Of the total urban residents, 76% (501 million) were affected in 2010. Along with PM2.5 concentration increase, massive number of rural to urban migration also contributed greatly to China's urban public health vulnerability.
显示更多 [+] 显示较少 [-]Temporal–spatial variation and source apportionment of soil heavy metals in the representative river–alluviation depositional system 全文
2016
Wang, Cheng | Yang, Zhongfang | Zhong, Cong | Ji, Junfeng
The contributions of major driving forces on temporal changes of heavy metals in the soil in a representative river−alluviation area at the lower of Yangtze River were successfully quantified by combining geostatistics analysis with the modified principal component scores & multiple linear regressions approach (PCS−MLR). The results showed that the temporal (2003–2014) changes of Cu, Zn, Ni and Cr presented a similar spatial distribution pattern, whereas the Cd and Hg showed the distinctive patterns. The temporal changes of soil Cu, Zn, Ni and Cr may be predominated by the emission of the shipbuilding industry, whereas the significant changes of Cd and Hg were possibly predominated by the geochemical and geographical processes, such as the erosion of the Yangtze River water and leaching because of soil acidification. The emission of metal−bearing shipbuilding industry contributed an estimated 74%–83% of the changes in concentrations of Cu, Zn, Ni and Cr, whereas the geochemical and geographical processes may contribute 58% of change of Cd in the soil and 59% of decrease of Hg.
显示更多 [+] 显示较少 [-]