细化搜索
结果 251-260 的 4,086
The large-scale process of microbial carbonate precipitation for nickel remediation from an industrial soil 全文
2016
Zhu, Xuejiao | Li, Weila | Zhan, Lu | Huang, Minsheng | Zhang, Qiuzhuo | Achal, Varenyam
Microbial carbonate precipitation is known as an efficient process for the remediation of heavy metals from contaminated soils. In the present study, a urease positive bacterial isolate, identified as Bacillus cereus NS4 through 16S rDNA sequencing, was utilized on a large scale to remove nickel from industrial soil contaminated by the battery industry. The soil was highly contaminated with an initial total nickel concentration of approximately 900 mg kg−1. The soluble-exchangeable fraction was reduced to 38 mg kg−1 after treatment. The primary objective of metal stabilization was achieved by reducing the bioavailability through immobilizing the nickel in the urease-driven carbonate precipitation. The nickel removal in the soils contributed to the transformation of nickel from mobile species into stable biominerals identified as calcite, vaterite, aragonite and nickelous carbonate when analyzed under XRD. It was proven that during precipitation of calcite, Ni2+ with an ion radius close to Ca2+ was incorporated into the CaCO3 crystal. The biominerals were also characterized by using SEM-EDS to observe the crystal shape and Raman-FTIR spectroscopy to predict responsible bonding during bioremediation with respect to Ni immobilization. The electronic structure and chemical-state information of the detected elements during MICP bioremediation process was studied by XPS. This is the first study in which microbial carbonate precipitation was used for the large-scale remediation of metal-contaminated industrial soil.
显示更多 [+] 显示较少 [-]Plant community and litter composition in temperate deciduous woodlots along two field gradients of soil Ni, Cu and Co concentrations 全文
2016
Hale, Beverley | Robertson, Paul
Perennial plant communities in the proximity of metal smelters and refineries may receive substantial inputs of base metal particulate as well as sulphate from the co-emission of sulphur dioxide. The Ni refinery at Port Colborne (Canada) operated by Inco (now Vale Canada Ltd.) emitted Ni, Co and Cu, along with sulphur dioxide, between 1918 and 1984. The objectives were to determine if vascular plant community composition, including standing litter, in twenty-one woodlots on clay or organic soil, were related to soil Ni concentration which decreased in concentration with distance from the Ni refinery. The soil Ni concentration in the clay woodlots ranged from 16 to 4130 mg Ni/kg, and in the organic woodlots, ranged from 98 to 22,700 mg Ni/kg. The concentrations of Co and Cu in the soils were also elevated, and highly correlated with soil Ni concentration. In consequence, each series of woodlots constituted a ‘fixed ratio ray’ of metal mixture exposure. For each of the woodlots, there were 16 independent measurements of ‘woodlot status’ which were correlated with elevated soil Ni concentration. Of the 32 combinations, there were eight linear correlations with soil Ni concentration, considerably more than would be expected by chance alone at a p-value of 0.05. With the exception of mean crown rating for shrubs at the clay sites, the correlations were consistent with the hypothesis that increased soil metal concentrations would be correlated with decreased diversity, plant community health or fitness, and increased accumulation of litter. Only five of the eight linear correlations were from the organic woodlots, suggesting that the observations were not confounded with soil type nor range in soil metal concentrations.
显示更多 [+] 显示较少 [-]Influence of different types of coals and stoves on the emissions of parent and oxygenated PAHs from residential coal combustion in China 全文
2016
Wang, Yan | Xu, Yue | Chen, Yingjun | Tian, Chongguo | Feng, Yanli | Chen, Tian | Li, Jun | Zhang, Gan
To evaluate the influence of coal property and stove efficiency on the emissions of parent polycyclic aromatic hydrocarbons (pPAHs) and oxygenated PAHs (oPAHs) during the combustion, fifteen coal/stove combinations were tested in this study, including five coals of different geological maturities in briquette and chunk forms burned in two residential stoves. The emission factors (EFs) of pPAHs and oPAHs were in the range of 0.129–16.7 mg/kg and 0.059–0.882 mg/kg, respectively. The geological maturity of coal significantly affected the emissions of pPAHs and oPAHs with the lower maturity coals yielding the higher emissions. The chunk-to-briquette transformation of coal dramatically increased the emissions of pPAHs and oPAHs during the combustion of anthracite, whereas this transformation only elevated the emissions of high molecular weight PAHs for bituminous coals. The influence of stove type on the emissions of pPAHs and oPAHs was also geological-maturity-dependent. High efficiency stove significantly reduced the emissions of PAHs from those relatively high-maturity coals, but its influences on low-maturity coals were inconstant.
显示更多 [+] 显示较少 [-]Pulsation effects on pollutant and sediment transport in free-surface flow 全文
2016
Khaldi, Nawel | Chouari, Yoldoss | Mhiri, Hatem | Bournot, Philippe
A series of numerical simulations are performed to study the pollutant and sediment transport in free surface channel flow. The present paper examines the dispersion of passive contaminants injected from a time periodic source in a fully developed turbulent flow. More precisely, the pulsation effects on the distribution behaviors of dissolved and particulate pollutants are analyzed and discussed. Simulations are carried out using a commercial Computational Fluid Dynamic (CFD) code, Fluent 6.3, which is based on the finite volume approach. The standard k−ε turbulence closure model is selected to simulate the turbulence generation and the Volume of Fluid (VOF) method is used to accurately capture the time varying free surface. The Discrete Phase Model (DPM) is used for capturing the movement of particles. Numerical results show that increasing pulsation amplitude and decreasing frequency generates higher dispersive effects in the concentration profiles of a dissolved pollutant. It is also concluded that, unlike dissolved substances, the particle transportation can be enhanced only for certain combinations of the pulsation amplitude and frequency due to the synchronization of the particle’s movement with the oscillating potential.•Increasing pulsation amplitude and decreasing frequency generates higher dispersive effects.•Particle transportation can be enhanced only for certain amplitude-frequency combinations.
显示更多 [+] 显示较少 [-]The influence of atmospheric particles on the elemental content of vegetables in urban gardens of Sao Paulo, Brazil 全文
2016
Amato-Lourenco, Luís Fernando | Moreira, Tiana Carla Lopes | de Oliveira Souza, Vanessa Cristina | Barbosa, Fernando | Saiki, Mitiko | Saldiva, Paulo H. N. (Paulo Hilário Nascimento) | Mauad, Thais
Although urban horticulture provides multiple benefits to society, the extent to which these vegetables are contaminated by the absorption of chemical elements derived from atmospheric deposition is unclear. This study was designed to evaluate the influence of air pollution on leafy vegetables in community gardens of Sao Paulo, Brazil. Vegetable seedlings of Brassica oleracea var. acephala (collard greens) and Spinacia oleracea (spinach) obtained in a non-polluted rural area and growing in vessels containing standard uncontaminated soil were exposed for three consecutive periods of 30, 60 and 90 days in 10 community gardens in Sao Paulo and in one control site. The concentrations of 17 chemical elements (traffic-related elements and those essential to plant biology) were quantified by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Tillandsia usneoides L. specimens were used as air plant biomonitors. The concentrations of As, Cd, Cr and Pb found in vegetables were compared to the recommended values for consumption. Principal Component Analysis (PCA) was used to cluster the elemental concentrations, and Generalized Linear Models (GLMs) were employed to evaluate the association of the factor scores from each PCA component with variables such as local weather, traffic burden and vertical barriers adjacent to the gardens. We found significant differences in the elemental concentrations of the vegetables in the different community gardens. These differences were related to the overall traffic burden, vertical obstacles and local weather. The Pb and Cd concentrations in both vegetables exceeded the limit values for consumption after 60 days of exposure. A strong correlation was observed between the concentration of traffic-related elements in vegetables and in Tillandsia usneoides L. An exposure response was observed between traffic burden and traffic-derived particles absorbed in the vegetables. Traffic-derived air pollution directly influences the absorption of chemical elements in leafy vegetables, and the levels of these elements may exceed the recommended values for consumption.
显示更多 [+] 显示较少 [-]Retrospective analysis of “new” flame retardants in the global atmosphere under the GAPS Network 全文
2016
Lee, Sum Chi | Sverko, Ed | Harner, Tom | Pozo, Karla | Barresi, Enzo | Schachtschneider, JoAnne | Zaruk, Donna | DeJong, Maryl | Narayan, Julie
A retrospective analysis was conducted on air samples that were collected in 2005 under the Global Atmospheric Passive Sampling (GAPS) Network around the time period when the Stockholm Convention on Persistent Organic Pollutants came into force. Results are presented for several new flame retardants, including hexabromocyclododecane (HBCD), which was recently listed under the Convention (2013). These results represent the first global-scale distributions in air for these compounds. The targeted compounds are shown to have unique global distributions in air, which highlights the challenges in understanding the sources and environmental fate of each chemical, and ultimately in their assessments as persistent organic pollutants. The study also demonstrates the feasibility of using the PUF disk passive air sampler to study these new flame retardants in air, many of which exist entirely in the particle-phase as demonstrated in this study using a KOA-based partitioning model.
显示更多 [+] 显示较少 [-]Toxicity assessment of perfluorooctane sulfonate using acute and subchronic male C57BL/6J mouse models 全文
2016
Xing, Jiali | Wang, Gang | Zhao, Jichun | Wang, Eryin | Yin, Boxing | Fang, Dongsheng | Zhao, Jianxin | Zhang, Hao | Chen, Yong Q. | Chen, Wei
Perfluorooctane sulfonate (PFOS) is a principal representative and the final degradation product of several commercially produced perfluorinated compounds. However, PFOS has a high bioaccumulation potential and therefore can exert toxicity on aquatic organisms, animals, and cells. Considering the widespread concern this phenomenon has attracted, we examined the acute and subchronic toxic effects of varying doses of PFOS on adult male C57BL/6 mice. The acute oral LD50 value of PFOS in male C57BL/6J mice was 0.579 g/kg body weight (BW). Exposure to the subchronic oral toxicity of PFOS at 2.5, 5, and 10 mg PFOS/kg BW/day for 30 days disrupted the homeostasis of antioxidative systems, induced hepatocellular apoptosis (as revealed by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay), triggered liver injury (as evidenced by the increased serum levels of aspartate aminotransferase, alanine amino transferase, alkaline phosphatase, and gamma-glutamyl transpeptidase and by the altered histology), and ultimately increased the liver size and relative weight of the mice. PFOS treatment caused liver damage but only slightly affected the kidneys and spleen of the mice. This study provided insights into the toxicological effects of PFOS.
显示更多 [+] 显示较少 [-]Toxicity of iron-based nanoparticles to green algae: Effects of particle size, crystal phase, oxidation state and environmental aging 全文
2016
Lei, Cheng | Zhang, Luqing | Yang, Kun | Zhu, Lizhong | Lin, Daohui
With the increasing environmental application and discharge of iron-based nanoparticles (NPs), a comprehensive understanding of their fate and ecotoxicological effect in the aquatic environment is very urgent. In this study, toxicities of 4 zero-valent iron NPs (nZVI) of different sizes, 2 Fe2O3 NPs of different crystal phases, and 1 type of Fe3O4 NPs to a green alga (Chlorella pyrenoidosa) were investigated, with a focus on the effects of particle size, crystal phase, oxidation state, and environmental aging. Results show that the algal growth inhibition of nZVI increased significantly with decreasing particle size; with similar particle sizes (20–30 nm), the algal growth inhibition decreased with oxidation of the NPs with an order of nZVI > Fe3O4 NPs > Fe2O3 NPs, and α-Fe2O3 NPs presented significantly higher toxicity than γ-Fe2O3 NPs. The NP-induced oxidative stress was the main toxic mechanism, which could explain the difference in algal toxicity of the NPs. The NP-cell heteroagglomeration and physical interactions also contributed to the nanotoxicity, whereas the effect of NP dissolution was negligible. The aging in distilled water and 3 surface water samples for 3 months increased surface oxidation of the iron-based NPs especially nZVI, which decreased the toxicity to algae. These findings will be helpful for the understanding of the fate and toxicity of iron-based NPs in the aquatic environment.
显示更多 [+] 显示较少 [-]Bioaccumulation of heavy metals, metalloids, and chlorine in ectomycorrhizae from smelter-polluted area 全文
2016
Cejpková, Jaroslava | Gryndler, Milan | Hršelová, Hana | Kotrba, Pavel | Řanda, Zdeněk | Synková, Iva | Borovička, Jan
Ectomycorrhizal (ECM) fungi contribute to the survival of host trees on metal-rich soils by reducing the transfer of toxic metals into roots. However, little is known about the ability of ECM fungi to accumulate elements in ectomycorrhizae (ECMs). Here we report Ag, As, Cd, Cl, Cu, Sb, V, and Zn contents in wild-grown Norway spruce ECMs collected in a smelter-polluted area at Lhota near Příbram, Czech Republic. The ECMs data were compared with the element concentrations determined in the corresponding non-mycorrhizal fine roots, soils, and soil extracts. Bioaccumulation factors were calculated to differentiate the element accumulation ability of ECMs inhabited by different mycobionts, which were identified by ITS rDNA sequencing. Among the target elements, the highest contents were observed for Ag, Cl, Cd, and Zn; Imleria badia ECMs showed the highest capability to accumulate these elements. ECMs of Amanita muscaria, but not of other species, accumulated V. The analysis of the proportions of I. badia and A. muscaria mycelia in ECMs by using species-specific quantitative real-time PCR revealed variable extent of the colonization of roots, with median values close to 5% (w/w). Calculated Ag, Cd, Zn and Cl concentrations in the mycelium of I. badia ECMs were 1 680, 1 510, 2 670, and 37,100 mg kg−1 dry weight, respectively, indicating substantial element accumulation capacity of hyphae of this species in ECMs. Our data strengthen the idea of an active role of ECM fungi in soil-fungal-plant interactions in polluted environments.
显示更多 [+] 显示较少 [-]Hepatic and renal trace element concentrations in American alligators (Alligator mississippiensis) following chronic dietary exposure to coal fly ash contaminated prey 全文
2016
Tuberville, Tracey D. | Scott, David E. | Metts, Brian S. | Finger, John W. | Hamilton, Matthew T.
Little is known about the propensity of crocodilians to bioaccumulate trace elements as a result of chronic dietary exposure. We exposed 36 juvenile alligators (Alligator mississippiensis) to one of four dietary treatments that varied in the relative frequency of meals containing prey from coal combustion waste (CCW)-contaminated habitats vs. prey from uncontaminated sites, and evaluated tissue residues and growth rates after 12 mo and 25 mo of exposure. Hepatic and renal concentrations of arsenic (As), cadmium (Cd) and selenium (Se) varied significantly among dietary treatment groups in a dose-dependent manner and were higher in kidneys than in livers. Exposure period did not affect Se or As levels but Cd levels were significantly higher after 25 mo than 12 mo of exposure. Kidney As and Se levels were negatively correlated with body size but neither growth rates nor body condition varied significantly among dietary treatment groups. Our study is among the first to experimentally examine bioaccumulation of trace element contaminants in crocodilians as a result of chronic dietary exposure. A combination of field surveys and laboratory experiments will be required to understand the effects of different exposure scenarios on tissue residues, and ultimately link these concentrations with effects on individual health.
显示更多 [+] 显示较少 [-]