细化搜索
结果 261-270 的 4,936
Assessment of carbon monoxide exposure in roadside food-vending shanties using coal cookstoves in Kolkata, India 全文
2019
Majumdar, Deepanjan | Sharma, Shubham
Roadside food-vending shanties using coal cookstoves may be an important source of carbon monoxide (CO) exposure in megacities in India. The shanties are often small, congested and poorly ventilated, and very little is known about the level of human exposure to CO. Here, we assessed the level of exposure to CO in 25 roadside food-vending shanties using coal cookstoves in Kolkata, India. Portable electrochemical CO monitors were used to measure CO concentrations during peak and non-peak customer-periods in closed (blocked from three sides) and semi-closed (blocked from two sides) shanties. Measurements were taken where customers sit indoor about 5–7 ft away from the cookstoves. The shanties' ventilation rates were measured using tracer gas concentration-decay technique. Levels of blood carboxyhaemoglobin (COHb) and exhaled CO were estimated using regression models. The 1-hr time weighted average (TWA) indoor CO exposure levels ranged from 7.8 to 18.1 ppm during peak-periods, and 0.7–3.1 ppm during non-peak-periods. The exposure levels during peak-periods exceeded the USEPA's reference limit of 9 ppm in all cases in the closed shanties, and in 71% of cases in the semi-closed shanties. The ventilation rates ranged from 5.5 to 23.4 and 14.8 to 32.5 cubic feet per minute (cfm) per person for the closed and semi-closed shanties, respectively, indicating poor ventilation in some shanties. There was significant variation (p = 0.01) in the level of indoor CO exposure between peak and non-peak periods, and between shanty types. The estimated levels of blood COHb during peak and non-peak hours were 0.78 ± 0.7% and 0.35 ± 0.07%, respectively, that were within the normal physiological values in non-smokers.
显示更多 [+] 显示较少 [-]Aged biochar alters nitrogen pathways in bauxite-processing residue sand: Environmental impact and biogeochemical mechanisms 全文
2019
Rezaei Rashti, M. | Esfandbod, M. | Phillips, I.R. | Chen, C.R.
Aged biochar alters nitrogen pathways in bauxite-processing residue sand: Environmental impact and biogeochemical mechanisms 全文
2019
Rezaei Rashti, M. | Esfandbod, M. | Phillips, I.R. | Chen, C.R.
Low nitrogen (N) content and retention in bauxite-processing residue sand (BRS) disposal areas pose a great challenge to the establishment of sustainable vegetation cover in this highly alkaline environment. The budget and fate of applied N in BRS and its potential environmental impacts are largely unknown. We investigated the effect of combined application of biochars [aged acidic (AC) vs alkaline pine (PC)] and di-ammonium phosphate (DAP) fertiliser on ammonia (NH₃) volatilisation, nitrous oxide (N₂O) emission and N retention in a 116-day glasshouse study. The application of AC to BRS decreased pH (≈0.5 units) in BRS, while PC biochar increased pH (≈0.3 units). The application of AC reduced NH₃ volatilisation by ca. 80%, while PC by ca. 25%. On the other hand, the AC treatment increased N₂O emission by 5 folds. However, the N loss via N₂O emission in the AC treatment only accounted for ca. 0.4% of applied N. The reduction in BRS pH and increased retention of mineral N due to the presence of oxygen-containing (phenolic and carboxylic) functional groups in AC may be responsible for reduced NH₃ volatilisation and increased N₂O emission. This study has highlighted the potential of biochar (particularly aged biochar) in improving N retention and minimising environmental impacts in highly alkaline environments.
显示更多 [+] 显示较少 [-]Aged biochar alters nitrogen pathways in bauxite-processing residue sand: Environmental impact and biogeochemical mechanisms 全文
2019
Rezaei Rashti, M. | Esfandbod, M. | Phillips, Ian R. | Chen, C. R.
Low nitrogen (N) content and retention in bauxite-processing residue sand (BRS) disposal areas pose a great challenge to the establishment of sustainable vegetation cover in this highly alkaline environment. The budget and fate of applied N in BRS and its potential environmental impacts are largely unknown. We investigated the effect of combined application of biochars [aged acidic (AC) vs alkaline pine (PC)] and di-ammonium phosphate (DAP) fertiliser on ammonia (NH3) volatilisation, nitrous oxide (N2O) emission and N retention in a 116-day glasshouse study. The application of AC to BRS decreased pH (≈0.5 units) in BRS, while PC biochar increased pH (≈0.3 units). The application of AC reduced NH3 volatilisation by ca. 80%, while PC by ca. 25%. On the other hand, the AC treatment increased N2O emission by 5 folds. However, the N loss via N2O emission in the AC treatment only accounted for ca. 0.4% of applied N. The reduction in BRS pH and increased retention of mineral N due to the presence of oxygen-containing (phenolic and carboxylic) functional groups in AC may be responsible for reduced NH3 volatilisation and increased N2O emission. This study has highlighted the potential of biochar (particularly aged biochar) in improving N retention and minimising environmental impacts in highly alkaline environments.
显示更多 [+] 显示较少 [-]Responses of leaf-associated biofilms on the submerged macrophyte Vallisneria natans during harmful algal blooms 全文
2019
Jiang, Mengqi | Zhou, Yanping | Ji, Xiyan | Li, Huimin | Zheng, Zheng | Zhang, Jibiao
The present study investigated the physiological responses, photosynthetic activity, and microbial community structure of leaf-associated biofilms on the microphyte Vallisneria natans during a harmful algal bloom. Results of the physiological and photosynthetic indices (Fᵥ/Fₘ ratios [maximum quantum yield of photosystem II (PSII)]; malondialdehyde content; total chlorophyll; and activities of superoxide dismutase, catalase and peroxidase) indicated that algal blooms could cause inhibition of photosynthesis, oxidative stress and an antioxidant system stress response in Vallisneria natans leaf-associated biofilms. Multifractal analysis suggested that allelochemicals or algal organic matter released by cyanobacteria could reduce the surface roughness of the leaf. Microbial diversity analysis of the biofilms showed that algal blooms slightly altered the microbial community structure while the richness and evenness of the microbial composition remained stable. This study provided useful information to better understand the adverse effects of algal blooms on submerged macrophytes.
显示更多 [+] 显示较少 [-]Spatial and temporal variation of inorganic ions in rainwater in Sichuan province from 2011 to 2016 全文
2019
Li, Junlin | Li, Rui | Cui, Lulu | Meng, Ya | Fu, Hongbo
China continues to suffer from severe acid deposition, despite the government implying a series of policies to control air pollution. In this study, rainwater samples were collected from 2011 to 2016 in Sichuan province to measure the pH values and the concentrations of nine inorganic ions (SO₄²⁻, NO₃⁻, NH₄⁺, Cl⁻, Na⁺, Ca²⁺, K⁺, Mg²⁺, and F⁻), and then to investigate their spatiotemporal variations. Besides, the dominant sources for the acidic ions in the precipitation were also revealed by statistical model. The results showed that the rainwater continued to be highly acidic, and the Volume-Weighted Mean (VWM) pH value was calculated to be 5.18 during 2011 and 2016. NH₄⁺, Ca²⁺, NO₃⁻, and SO₄²⁻ were the dominant water-soluble inorganic ions, accounting for 79.2% of the total ions on average. The remarkable decrease in NO₃⁻ and SO₄²⁻ concentrations (from 75.9 to 54.3 μeq L⁻¹ and from 285 to 145 μeq L⁻¹, respectively) resulted in an increase in the pH value of rainwater from 5.24 in 2011 to 5.70 in 2016. The concentrations of SO₄²⁻, NO₃⁻, F⁻, Na⁺, and K⁺ showed remarkably seasonal variation, with the highest value observed in winter, followed by spring and autumn, and the lowest value observed in summer. High VWM concentration of these ions in winter were mainly due to adverse meteorological conditions (e.g., rare rainfall, lower planetary boundary height, and stagnant air) and intensive anthropogenic emissions. SO₄²⁻, NO₃⁻, and F⁻ ions peaked in the southeastern Sichuan province, which is a typical industrial region. NH₄⁺ concentrations decreased from 268 μeq L⁻¹ in the east to 10.4 μeq L⁻¹ in the western Sichuan province, which could be related to the development of agriculture in the eastern Sichuan province. Ca²⁺ peaked in southeastern Sichuan province due to intensive construction activities and severe stone desertification. On the basis of Positive Matrix Factorization (PMF) analysis, four sources of inorganic ions in rainwater were identified, including anthropogenic source, crust, biomass burning, and aging sea salt aerosol. Geographically Weighted Regression (GWR) was used to find the spatial correlations between the socio-economic factors and ions in the rainwater. At the regional scale, the influence of fertilizer consumption and Gross Agricultural Production (GAP) on NH₄⁺ increased from east to west; moreover the influence of Gross Industrial Production (GIP) on SO₄²⁻ and NO₃⁻ also increased.
显示更多 [+] 显示较少 [-]Atmospheric deposition of antimony in a typical mercury-antimony mining area, Shaanxi Province, Southwest China 全文
2019
Ao, Ming | Qiu, Guangle | Zhang, Chao | Xu, Xiaohang | Zhao, Lei | Feng, Xinbin | Qin, Song | Meng, Bo
Mercury-antimony (HgSb) mining activities are important anthropogenic sources of Hg and Sb to the local environment. The Xunyang HgSb mine situated in Shaanxi Province is an active Hg mine in China. To understand the emission, transportation, and deposition of Sb through HgSb mining activities, current study systematically monitored the Sb concentration in precipitation in the Xunyang HgSb mining district. Five groups of experimental pots were carefully designed to further investigate the influence of HgSb mining activities on the Sb contamination in the local surface soil. Based on the overtime increasing of the Sb concentrations in soil from experimental pots, for the first trial, we estimated the atmospheric deposition flux/mass of Sb in the Xunyang HgSb mining district. Our results showed that the concentrations of Sb in precipitation in the Xunyang HgSb mining district ranged from 0.71 μg L−1 to 19 μg L−1 (mean = 4.2 ± 4.5 μg L−1), which was orders of magnitude higher than that at the control site. As expected, the concentration of Sb in precipitation was highly elevated near of the HgSb smelter and gradually decreased with distance from the smelter. After 12 months exposure, Sb concentrations in soil of experimental pots were increased by 1.2–8.5 times. The average atmospheric wet and dry deposition flux of Sb in the Xunyang HgSb mining district were 7.2 ± 6.9 μg m−2 day−1 and 2.1 ± 4.7 mg m−2 day−1, respectively; the annual wet and dry deposition mass of Sb through HgSb mining activities were estimated to be 1.6 t y−1 and 158 t y−1, respectively, indicating that dry deposition was the dominant pathway (98 ± 1.2%) for the removal of Sb from the atmosphere. Our results confirmed that the ongoing HgSb mining activities resulted to serious Sb contamination to terrestrial ecosystems, posing a potential threat to local residents in the Xunyang HgSb mining district.
显示更多 [+] 显示较少 [-]Sorption and mobility of metformin and guanylurea in soils as affected by biosolid amendment: Batch and column tests 全文
2019
Briones, Rowena M. | Sarmah, Ajit K.
Recent classification of metformin as an emerging contaminant warrants assessment of its fate and behaviour in the natural environment especially with land-based application of potentially contaminated wastewaters and biosolids. The present study provided further insight into the sorption mechanisms of metformin and its transformation product guanylurea in soil and upon biosolid fortification. Decreased metformin sorption (12.4%) as measured by the effective distribution coefficient (Kdᵉᶠᶠ) was observed with biosolids amendment while significant increase (2500%) in guanylurea sorption was calculated. Analysis of co-solute effects confirmed their contrasting sorption mechanisms with the absence of competitive effects in unamended soil. Results of the column tests were in good agreement with the batch sorption studies as the fitted values of retardation factors decreased and increased for metformin and guanylurea, respectively, upon addition of biosolids. The shapes of the breakthrough curves suggest slower desorption rates for both compounds in unamended soil resulting to non-equilibrium conditions and back-end tailings. However, in biosolid-amended soil columns, these tailings were less pronounced resembling equilibrium transport. Results also demonstrated enhanced mobility of both compounds upon biosolids fortification. The non-equilibrium chemical transport model fitted the measured data well (0.975 > r² > 0.988) especially for unamended soils which suggests the existence of non-equilibrium conditions and rate-limited sorption sites.
显示更多 [+] 显示较少 [-]Reproductive toxicity of primary and secondary microplastics to three cladocerans during chronic exposure 全文
2019
Jaikumar, Gayathri | Brun, Nadja R. | Vijver, Martina G. | Bosker, Thijs
Microplastics (<5 mm) are distributed ubiquitously in natural environments. The majority of microplastics in aquatic environments are shown to have rough surfaces due to various weathering processes (secondary microplastics; SMP), while laboratory studies predominantly utilise pristine microplastics (primary microplastics; PMP). Here we present the results from a study comparing the chronic effects of pristine PMP and artificially weathered SMP to three different Cladoceran species (Daphnia magna, Daphnia pulex, Ceriodaphnia dubia). We assessed the impact of PMP and SMP on reproductive output using various measured parameters, including time of first brood, size of first brood, size of first three broods, cumulative number of neonates, total number of broods and terminal length of test animals. Our results show that reproductive output of all species declined in a dose-dependent manner. The No Observed Effect Concentration (NOEC) was less than the lowest tested concentration (102 p/mL) for at least one measured endpoint for all species and both PMP and SMP. Further, it was inferred that species sensitivity varied inversely with body size for most endpoints, resulting in C. dubia being the most sensitive species; and D. magna being the least sensitive species under study. In addition, PMP appeared to have greater toxic potential as compared to SMP. This study is the first to directly compare the chronic toxicity of both pristine and weathered microplastic particles on three freshwater toxicological model organisms. Our results indicate that sensitivity in reproduction and growth to microplastics may differ between species and type of microplastic exposed; highlighting the importance of using multiple species and structural types of particles.
显示更多 [+] 显示较少 [-]Role of PM2.5 in the photodegradation of the atmospheric benzene 全文
2019
Liu, Chunqiong | Zhang, Xiaohui | Wang, Qingeng | Shi, Kai
The presence of PM₂.₅ may affect the photodegradation of benzene in the natural atmosphere. On one hand, the photodegradation of benzene may be promoted with the increase in PM₂.₅ concentrations, owing to adsorption and catalysis effect of PM₂.₅ surface; On the other hand, PM₂.₅ can scatter or block ultraviolet light and lead to weakening the photochemical reactions in the atmospheric system. It is very difficult to prove which process is dominant in the real atmosphere due to the complexity of the atmosphere. Based on coupling detrended fluctuation analysis, the goal of this work is to reveal the role of PM₂.₅ in the photodegradation of benzene in real atmosphere over long time scales. The 9 years regular monitoring data from 2007 to 2016 in Puzi of Taiwan are analyzed. A new nonlinear parameter (PDB) is established to characterize the photodegradation degree of atmospheric benzene. Based on sliding window technique, the correlations between the temporal variation of PDB and PM₂.₅ are analyzed. The results show that there is a positive correlation between PDB and PM₂.₅ in daytime and little correlation between them in nighttime. It indicates that PM₂.₅ mainly plays the promoting effect on the photodegradation of atmospheric benzene. This is the first study to directly determine the role of PM₂.₅ in the photochemical behavior of atmospheric benzene based on long term field observation data. Moreover, the results suggest that the regional transport of PM₂.₅ could seriously affect the geochemistry cycle of some VOCs. This research provides a new analysis method to directly quantify the effect of PM₂.₅ on the photodegradation of VOCs in the real atmosphere. It is helpful for evaluating the role of PM₂.₅ in the complex photochemical system.
显示更多 [+] 显示较少 [-]Hepatotoxicity of perfluorooctanoic acid and two emerging alternatives based on a 3D spheroid model 全文
2019
Sun, Sujie | Guo, Hua | Wang, Jianshe | Dai, Jiayin
Perfluorooctanoic acid (PFOA) toxicity is of considerable concern due to its wide application, environmental persistence, and bioaccumulation. In the current study, we used a scaffold-free three-dimensional (3D) spheroid model of mouse liver cells (AML12) to explore the toxicity of PFOA and emerging alternatives (HFPO-DA and PFO4DA). Comparing the short-term (24 and 72 h treatment) toxicity of PFOA between conventional 2D monolayer cells and 3D spheroids, we found that spheroids had higher EC₅₀ values and lower ROS levels after treatment, indicating their greater resistance to PFOA. Cell viability (i.e., adenosine triphosphate (ATP) content and lactate dehydrogenase (LDH) leakage) and liver-specific function (i.e., albumin secretion) were stable in spheroids through 28 day of culture. However, under 100 and 200 μM-PFOA treatment for 28 day, ROS levels, LDH leakage, and caspase3/7 activity all increased significantly. As a sensitive parameter, ROS showed a significant increase at 21 day, even in the 50 μM-PFOA group. Consistent with the elevation of ROS and caspase3/7, the expressions of oxidative stress- and apoptosis-related genes, including Gsta2, Nqo1, Ho-1, caspase3, p53, and p21, were induced in dose- and time-dependent manners after PFOA exposure. The peroxisome proliferator-activated receptor alpha (PPARα) pathway was also activated after treatment, with significant induction of its target genes, Fabp4 and Scd1. Similar to PFOA, both HFPO-DA and PFO4DA activated the PPARα pathway, induced ROS levels, and initiated cell damage, though at a relatively lower extent than that of PFOA. Our results imply that the 3D spheroid model is a valuable tool in chronic toxicological studies.
显示更多 [+] 显示较少 [-]The role of exposure to phthalates in variations of anogenital distance: A systematic review and meta-analysis 全文
2019
Zarean, Maryam | Keikha, Mojtaba | Feizi, Awat | Kazemitabaee, Maryamsadat | Kelishadi, Roya
Environmental chemicals such as phthalate esters may have adverse effects on anogenital distance (AGD), but the evidence in both genders has not been reviewed systematically. The objective of the present study is to conduct a systematic review and meta-analysis of studies that analyzed the relationship between exposure to phthalates and AGD. English papers published up to March 2018 were searched in PubMed, Scopus, Clarivate-Web of Science, and Google scholar. We applied fixed-effects models to calculate pooled beta coefficient [β]. In the case of heterogeneity, random-effects models were used. Using the comprehensive search strategies, 313 papers were identified and after screening, 10 of them were included in this study. In primary analyses, we found that exposure to phthalates was not associated with short AGD (β = −0.11; 95% CI, −0.27, 0.06; I² = 0%). However, results of subgroup analyses indicated that in boys, the sum of di-2-ethylhexyl phthalate (∑DEHP) metabolites had significant association with the risk of shortened anopenile distance (AGDAP) (β = −0.915, 95% CI: 1.629, −0.2) and anoscrotal distance (AGDAS) (β = −0.857, 95% CI: 1.455, −0.26). In addition, urinary monobutyl phthalate (MBP), monoethyl phthalate (MEP), and monoisobutyl phthalate (MiBP) were associated with short AGDAP. We also observed significant association between monobenzylphthalate (MBzP) and anofourchette distance (AGDAF) in girls. Our study provided findings on significant association of exposure to ∑DEHP metabolites, MBP, MEP, and MiBP with shortened AGDAP in boys. The mechanisms of phthalates effect on AGD may involve receptors and enzymes involved in steroidgenesis, negative influence on Leydig cells, cell proliferation, gonocyte cell numbers, and testosterone production.
显示更多 [+] 显示较少 [-]