细化搜索
结果 2641-2650 的 3,208
Biodegradation of pesticides using fungi species found in the aquatic environment 全文
2015
Oliveira, B. R. | Penetra, A. | Cardoso, V. V. | Benoliel, M. J. | Barreto Crespo, M. T. | Samson, R. A. | Pereira, V. J.
Relatively limited attention has been given to the presence of fungi in the aquatic environment compared to their occurrence in other matrices. Taking advantage and recognizing the biodegradable capabilities of fungi is important, since these organisms may produce many potent enzymes capable of degrading toxic pollutants. Therefore, the aim of this study was to evaluate the potential ability of some species of filamentous fungi that occur in the aquatic environment to degrade pesticides in untreated surface water. Several laboratory-scale experiments were performed using the natural microbial population present in the aquatic environment as well as spiked fungi isolates that were found to occur in different water matrices, to test the ability of fungi to degrade several pesticides of current concern (atrazine, diuron, isoproturon and chlorfenvinphos). The results obtained in this study showed that, when spiked in sterile natural water, fungi were able to degrade chlorfenvinphos to levels below detection and unable to degrade atrazine, diuron and isoproturon. Penicillium citrinum, Aspergillus fumigatus, Aspergillus terreus and Trichoderma harzianum were found to be able to resist and degrade chlorfenvinphos. These fungi are therefore expected to play an important role in the degradation of this and other pollutants present in the aquatic environment.
显示更多 [+] 显示较少 [-]Evaluating the efficacy of bioremediating a diesel-contaminated soil using ecotoxicological and bacterial community indices 全文
2015
Khudur, Leadin Salah | Shahsavari, Esmaeil | Miranda, Ana F. | Morrison, Paul D. | Nugegoda, Dayanthi | Ball, A. S.
Diesel represents a common environmental contaminant as a result of operation, storage, and transportation accidents. The bioremediation of diesel in a contaminated soil is seen as an environmentally safe approach to treat contaminated land. The effectiveness of the remediation process is usually assessed by the degradation of the total petroleum hydrocarbon (TPH) concentration, without considering ecotoxicological effects. The aim of this study was to assess the efficacy of two bioremediation strategies in terms of reduction in TPH concentration together with ecotoxicity indices and changes in the bacterial diversity assessed using PCR-denaturing gradient gel electrophoresis (DGGE). The biostimulation strategy resulted in a 90 % reduction in the TPH concentration versus 78 % reduction from the natural attenuation strategy over 12 weeks incubation in a laboratory mesocosm-containing diesel-contaminated soil. In contrast, the reduction in the ecotoxicity resulting from the natural attenuation treatment using the Microtox and earthworm toxicity assays was more than double the reduction resulting from the biostimulation treatment (45 and 20 % reduction, respectively). The biostimulated treatment involved the addition of nitrogen and phosphorus in order to stimulate the microorganisms by creating an optimal C:N:P molar ratio. An increased concentration of ammonium and phosphate was detected in the biostimulated soil compared with the naturally attenuated samples before and after the remediation process. Furthermore, through PCR-DGGE, significant changes in the bacterial community were observed as a consequence of adding the nutrients together with the diesel (biostimulation), resulting in the formation of distinctly different bacterial communities in the soil subjected to the two strategies used in this study. These findings indicate the suitability of both bioremediation approaches in treating hydrocarbon-contaminated soil, particularly biostimulation. Although biostimulation represents a commercially viable bioremediation technology for use in diesel-contaminated soils, further research is required to determine the ecotoxicological impacts of the intervention.
显示更多 [+] 显示较少 [-]Oxidative stress, apoptosis, and cell cycle arrest are induced in primary fetal alveolar type II epithelial cells exposed to fine particulate matter from cooking oil fumes 全文
2015
Epidemiological studies demonstrate a linkage between morbidity and mortality and particulate matter (PM), particularly fine particulate matter (PM₂.₅) that can readily penetrate into the lungs and are therefore more likely to increase the incidence of respiratory and cardiovascular diseases. The present study investigated the compositions of cooking oil fume (COF)-derived PM₂.₅, which is the major source of indoor pollution in China. Furthermore, oxidative stress, cytotoxicity, apoptosis, and cell cycle arrest induced by COF-derived PM₂.₅ in primary fetal alveolar type II epithelial cells (AEC II cells) were also detected. N-acetyl-L-cysteine (NAC), a radical scavenger, was used to identify the role of oxidative stress in the abovementioned processes. Our results suggested that compositions of COF-derived PM₂.₅ are obviously different to PM₂.₅ derived from other sources, and COF-derived PM₂.₅ led to cell death, oxidative stress, apoptosis, and G0/G1 cell arrest in primary fetal AEC II cells. Furthermore, the results also showed that COF-derived PM₂.₅ induced apoptosis through the endoplasmic reticulum (ER) stress pathway, which is indicated by the increased expression of ER stress-related apoptotic markers, namely GRP78 and caspase-12. Besides, the induction of oxidative stress, cytotoxicity, apoptosis, and cell cycle arrest was reversed by pretreatment with NAC. These findings strongly suggested that COF-derived PM₂.₅-induced toxicity in primary fetal AEC II cells is mediated by increased oxidative stress, accompanied by ER stress which results in apoptosis.
显示更多 [+] 显示较少 [-]Assessment of the risk of failure of high voltage substations due to environmental conditions and pollution on insulators 全文
2015
Pollution on electrical insulators is one of the greatest causes of failure of substations subjected to high levels of salinity and environmental pollution. Considering leakage current as the main indicator of pollution on insulators, this paper focuses on establishing the effect of the environmental conditions on the risk of failure due to pollution on insulators and determining the significant change in the magnitude of the pollution on the insulators during dry and humid periods. Hierarchical segmentation analysis was used to establish the effect of environmental conditions on the risk of failure due to pollution on insulators. The Kruskal-Wallis test was utilized to determine the significant changes in the magnitude of the pollution due to climate periods. An important result was the discovery that leakage current was more common on insulators during dry periods than humid ones. There was also a higher risk of failure due to pollution during dry periods. During the humid period, various temperatures and wind directions produced a small change in the risk of failure. As a technical result, operators of electrical substations can now identify the cause of an increase in risk of failure due to pollution in the area. The research provides a contribution towards the behaviour of the leakage current under conditions similar to those of the Colombian Caribbean coast and how they affect the risk of failure of the substation due to pollution.
显示更多 [+] 显示较少 [-]Mathematical modelling and optimization of synthetic textile dye removal using soil composites as highly competent liner material 全文
2015
Das, Papita | Banerjee, Priya | Mondal, Sandip
Soil is widely used as adsorbent for removing toxic pollutants from their aqueous solutions due to its wide availability and cost efficiency. This study investigates the potential of soil and soil composites for removal of crystal violet (CV) dye from solution on a comparative scale. Optimisation of different process parameters was carried out using a novel approach of response surface methodology (RSM) and a central composite design (CCD) was used for determining the optimum experimental conditions, as well as the result of their interactions. Around 99.85 % removal of CV was obtained at initial pH 6.4, which further increased to 99.98 % on using soil and cement composite proving it to be the best admixture of those selected. The phenomenon was found to be represented best by the Langmuir isotherm at different temperatures. The process followed the pseudo-second-order kinetic model and was determined to be spontaneous chemisorption in nature. This adsorbent can hence be suggested as an appropriate liner material for the removal of CV dye.
显示更多 [+] 显示较少 [-]Chemical extractability of As and Pb from soils across long-term abandoned metallic mine sites in Korea and their phytoavailability assessed by Brassica juncea 全文
2015
Han, Junho | Kim, Juhee | Kim, Minhee | Moon, Deok Hyun | Sung, Jung-Suk | Hyun, Seunghun
The chemical extractability of As and Pb (by 5 mM CaCl₂, 0.1 M HCl, 0.05 M NH₄(H₂PO₄), and aqua regia) from soils and their phytoavailability (by Brassica juncea) were assessed using 16 soil samples collected as a function of distance from mine pits across three long-term abandoned metallic mine sites. The total concentrations of As and Pb (17–41,000 and 27–10,047 mg kg⁻¹, respectively) decreased with increasing separation distance from the mine pits along a declining slope. However, the percentage of chemically leachable As and Pb mass (e.g., by 5 mM CaCl₂, 0.1 M HCl, or 0.05 M NH₄(H₂PO₄)) relative to total mass (e.g., by aqua regia) tended to increase exponentially with distance, indicating more chemically labile fractions present in less contaminated downgradient soils. Among soil components, extractable As concentrations were best described by coupling DCB-Al with other Al and Fe oxides. For Pb concentration, pH coupled to DCB-Al or Ox-Al provided a good predictive relationship. The inhibitory growth and uptake by plants were best correlated with the extractable concentrations by 5 mM CaCl₂and 0.1 M HCl. In conclusion, the chemical extractability and phytoavailability of As and Pb are highly influenced by the relative labile fraction in abandoned mine soils, and its distribution in soils is essentially correlated with sampling distance from mine pits.
显示更多 [+] 显示较少 [-]Ozonation and peroxone oxidation of ethylenethiourea in water: operational parameter optimization and by-product identification 全文
2015
Bottrel, S. | Amorim, C. | Ramos, V. | Romão, G. | Leao, M.
The objective of this work was to study the degradation and mineralization of ethylenethiourea (ETU) in water by ozonation at different pH values and in the presence of hydrogen peroxide. Degradation experiments were performed using an initial ETU concentration of 50 ppm for 180 min with a gas flux of 0.25 dm³ min⁻¹and an O₃production rate of 12.1 mg min⁻¹. Degradation of by-products was monitored by direct injection electrospray ionization mass spectrometry (ESI-MS), ETU concentration was determined by HPLC-UV, and its mineralization was detected by total organic carbon (TOC) analysis. Optimum degradation of ETU in water was observed at pH = 11, whereas at pH = 3, the degradation of ETU was slowest, indicating that the reaction occurred through different mechanisms. The additional effects of hydroxyl radicals formed at the highest pH can be used to explain the results obtained in this study. Peroxone experiments were carried out in the presence of 400 and 800 mg L⁻¹H₂O₂; the degradation of ETU was faster at 400 mg L⁻¹H₂O₂. This was attributed to the scavenging effect of the excess H₂O₂. ETU treatment by ozonation produced several by-products of degradation such as ethylene urea and 2-imidazoline.
显示更多 [+] 显示较少 [-]Microbial community structure in a dual chamber microbial fuel cell fed with brewery waste for azo dye degradation and electricity generation 全文
2015
Miran, Waheed | Nawaz, Mohsin | Kadam, Avinash | Shin, Seolhye | Heo, Jun | Jang, Jiseon | Lee, Dae Sung
The expansion in knowledge of the microbial community structure can play a vital role in the electrochemical features and operation of microbial fuel cells (MFCs). In this study, bacterial community composition in a dual chamber MFC fed with brewery waste was investigated for simultaneous electricity generation and azo dye degradation. A stable voltage was generated with a maximum power density of 305 and 269 mW m⁻² for brewery waste alone (2000 mg L⁻¹) and after the azo dye (200 mg L⁻¹) addition, respectively. Azo dye degradation was confirmed by Fourier transform infrared spectroscopy (FT-IR) as peak corresponding to –N=N– (azo) bond disappeared in the dye metabolites. Microbial communities attached to the anode were analyzed by high-throughput 454 pyrosequencing of the 16S rRNA gene. Microbial community composition analysis revealed that Proteobacteria (67.3 %), Betaproteobacteria (30.8 %), and Desulfovibrio (18.3 %) were the most dominant communities at phylum, class, and genus level, respectively. Among the classified genera, Desulfovibrio most likely plays a major role in electron transfer to the anode since its outer membrane contains c-type cytochromes. At the genus level, 62.3 % of all sequences belonged to the unclassified category indicating a high level of diversity of microbial groups in MFCs fed with brewery waste and azo dye. HIGHLIGHTS: • Azo dye degradation and stable bioelectricity generation was achieved in the MFC. • Anodic biofilm was analyzed by high-throughput pyrosequencing of the 16S rRNA gene. • Desulfovibrio (18.3 %) was the dominant genus in the classified genera. • Of the genus, 62.3 % were unclassified, thereby indicating highly diverse microbes. Graphical Abstract A schematic diagram of a dual chamber microbial fuel cell for azo dye degradation and current generation (with microbial communities at anode electrode)
显示更多 [+] 显示较少 [-]Geochemical fractions and risk assessment of trace elements in soils around Jiaojia gold mine in Shandong Province, China 全文
2015
Cao, Feifei | Kong, Linghao | Yang, Liyuan | Zhang, Wei
Soils located adjacent to the Jiaojia gold mine were sampled and analyzed to determine the degree of which they were contaminated by trace elements (Hg, As, Cd, Pb, Cu, and Zn) in Shandong Province, China. All 18 samples exhibited mean Hg, As, Cd, and Pb concentrations in excess of local background values, while the mean concentrations of Cu and Zn were below the background values. In addition, the concentrations of trace elements in gold smelter (GS) soils were higher than in the gold mine (GM) soils. The result from a modified Tessier sequential extraction procedure was that with the exception of Cu in soils near the smelter, the trace elements were predominantly associated with the residual fraction. After residual fraction, most Hg was mainly humic acid and strong organic fraction, while most As was the humic acid. Cd was associated with the water soluble, ion exchange, and carbonate fractions compared with the other trace elements. Furthermore, Cu, Pb, and Zn were more concentrated in the humic acid and Fe/Mn oxide fraction. The fractions of trace elements were affected by soil pH and Ec (Electrical conductivity). The humic acid fraction of Hg as well as the ion exchange fraction of Cd and Zn displayed negative correlations with soil pH. The strong organic fraction of Hg, the Fe/Mn oxide fraction of Cd, and the carbonate fraction of Zn were positively related to the soil Ec. The strong organic fraction and ion exchange fraction of Zn were negatively related to soil Ec. However, the ion exchange and carbonate fractions of As showed significant positive correlations with soil pH. A calculated individual availability factor (A f ⁱ) is used; the values of each trace element in the soils are in the following order: Cu > Cd > Pb > Zn > As > Hg. When combined with a risk assessment code, data suggest that Hg, As, Pb, and Zn levels showed low risk for the environment, whereas Cd levels in soils adjacent to the GM and Cu levels in soils adjacent to the GS showed medium risk to the environment, and Cd levels in soils adjacent to the GS exhibited higher environment risk.
显示更多 [+] 显示较少 [-]Exogenous NO depletes Cd-induced toxicity by eliminating oxidative damage, re-establishing ATPase activity, and maintaining stress-related hormone equilibrium in white clover plants 全文
2015
Liu, S. L. | Yang, R. J. | Pan, Y. Z. | Wang, M. H. | Zhao, Y. | Wu, M. X. | Hu, J. | Zhang, L. L. | Ma, Mingdao
Various nitric oxide (NO) regulators [including the NO donor sodium nitroprusside (SNP), the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), the NO-synthase inhibitor N ᴳ-nitro-L-Arg-methyl ester (L-NAME), and the SNP analogues sodium nitrite/nitrate and sodium ferrocyanide] were investigated to elucidate the role of NO in white clover (Trifolium repens L.) plants after long-term (5 days) exposure to cadmium (Cd). A dose of 100 μM Cd stress significantly restrained plant growth and decreased the concentrations of chlorophyll and NO in vivo, whereas it disrupted the balance of stress-related hormones and enhanced the accumulation of Cd, thereby inducing reactive oxygen species (ROS) burst. However, the inhibition of plant growth was relieved by 50 μM SNP through its stimulation of ROS-scavenging compounds (ascorbic acid, ascorbate peroxidase, catalase, glutathione reductase, non-protein thiol, superoxide dismutase, and total glutathione), regulation of H⁺-ATPase activity of proton pumps, and increasing jasmonic acid and proline but decreasing ethylene in plant tissues. Even so, the alleviating effect of SNP on plant growth was counteracted by cPTIO and L-NAME and was not observed with SNP analogues, suggesting that the protective roles of SNP are related to the induction of NO. These results suggest that NO may improve the Cd tolerance of white clover plants by eliminating oxidative damage, re-establishing ATPase activity, and maintaining hormone equilibrium. Improving our understanding of the role of NO in white clover plants is key to expanding the plantations to various regions and the recovery of pasture species in the future.
显示更多 [+] 显示较少 [-]