细化搜索
结果 271-280 的 502
Passivation Effect of Corn Vinasse Biochar on Heavy Metal Lead in Paddy Soil of Pb-Zn Mining Area
2024
M. Xiong, G. Q. Dai, R. G. Sun and Z. Zhao
The in-lab incubation experiments were conducted to identify the passivation effect of corn vinasse biochar, which was prepared at different temperatures, on heavy metal Pb in paddy soil of the Pb-Zn mining area. The results showed that after 30 days of biochar amended to the soil, the soil pH and organic carbon content increased by 2.72%-8.47% and 27.79%-65.26%, respectively. The CO32- and OH- contained in corn vinasse biochar could react with Pb and generate carbonate and hydroxide of Pb. In comparison with the treatment control, the bioavailable fractions of Pb were reduced by 26.6%, 23.30%, 26.95%, and 35.33%, respectively, in biochar-amended treatments. Exchangeable fractions of Pb decreased by 21.50%, 21.33%, 22.58%, and 22.58% for the treatment 3% (300°C), 6% (300°C), 3% (600°C), and 6% (300°C) corn vinasse biochar, respectively, compared with the treatment control. As a whole, corn vinasse biochar could effectively promote the transformation of Pb in soil from the exchangeable fractions into the Fe-Mn oxide-bound fractions and residue fractions, with a significant passivation effect for Pb in soil and more effective passivation by high-temperature preparation and increased dosage of biochar.
显示更多 [+] 显示较少 [-]Effectiveness of Cadmium on Biochemical Shift of Pea Plant Treated with Mycorrhiza and Putrescine
2024
Prasann Kumar, Shipa Rani Dey and Debjani Choudhury
Heavy metals like cadmium (Cd), mercury (Hg), bismuth (Bi), and arsenic (As) are potent and harmful poisonous sources that cause havoc on health conditions for the population of the world. However, the response of our crop species to these potent heavy metals-related toxicity is still left to be fully understood. It is a matter of great concern, as we are heavily dependent on crop species like rice, wheat, peas, etc. Our study here aims to learn about the defensive mechanism of Pisum sativum L. aided with putrescine and mycorrhiza against the stress created by Cd-related toxicity. We quantified physiological parameters such as the membrane-related injury and stability index. We further measured the total free proline content, lipid peroxidation content, and SOD activity. We executed our quantitative experiments on the stressed pea plants due to the exogenously applied Cd-toxicity in the presence and absence of mycorrhiza and putrescine. Insights of our significant results will improve the understanding of readers of the role of mycorrhiza and putrescine in improvising the tolerance level of a pea plant over Cd-related toxicity.
显示更多 [+] 显示较少 [-]Enhanced Solar Photovoltaic Power Production Approach for Electric Vehicle Charging Station: Economic and Environmental Aspects
2024
J. Techo, S. Techo, A. Palamanit, E. Saniso, A. A. Chand and P. Prasannaa
In recent years, Electric Vehicles (EVs) are contributing a major share in Thailand and benefit the environment. Most of the EV charging stations are sourced from solar energy as it becomes a carbon-free source of energy production. Secondly, Thailand is rich in solar irradiance, and higher irradiance leads to higher power production. On the other hand, in tropical conditions, solar Photovoltaic (PV) module temperature increases following the solar irradiance due to high ambient temperature, resulting negative impact on the efficiency and lifespan of photovoltaic (PV) modules. Further, to increase PV power production, in this study, different rates of cooling strategies are proposed. The study found that reducing the temperature by 5% to 25% resulted in increased average power outputs of 5947.94W, 6021.43W, 6094.92W, 6168.41W, and 6241W, respectively. Notably, 25% of the cooling rate achieved higher production. However, it is lower than the nominal power production. Following that, economic analysis and environmental impacts are analyzed for Thailand’s EV charging station using a different cooling rate of PV module. Overall, it is concluded that, depending on the economic viability of the EV charging station, cooling technology can be applied, and it will benefit the EV charging station both economically and environmentally. To further enhance the solar PV power production approach for EV charging stations in Thailand, it is imperative to prioritize future endeavors towards optimizing cooling technology, integrating energy storage, and implementing supportive policies.
显示更多 [+] 显示较少 [-]Sustainability Analysis of Landfill Cover System Constructed Using Recycled Waste Materials by Life Cycle Assessment
2024
G. Sanoop, Sobha Cyrus and G. Madhu
The sustainability of using industrial by-products for the construction of landfill cover was determined using Life Cycle Assessment (LCA). LCA was carried out on four materials: sand- bentonite mix, red earth- bentonite mix (amended soil), Waste Foundry Sand (WFS)- Bentonite mix, and WFS- marine clay mix. The former two are commonly used cover soils and the latter two are alternative materials proposed. Environmental impacts based on the extraction of resources, processing, transportation to the site, and site preparation were considered using the ‘cradle to site’ approach. Analysis was carried out in OpenLCA software using the ReCiPe (H) Midpoint method of impact assessment. Required data for analysis was taken from the Ecoinvent database supplemented with inputs from a field survey. The use of WFS in landfill cover systems was found to be sustainable using LCA studies when compared to conventional materials.
显示更多 [+] 显示较少 [-]A Projection Study of Gaseous Pollutants Formed, Potential Health Effects and Clinical Codification in Piyungan Landfill
2024
E. Fikri, Y. W. Firmansyah A. S. Afifah and R. K. Dewi
The world is currently facing significant environmental challenges due to increasing urbanization and globalization. Human activities can produce greenhouse gases (GHGs) such as CO2 and CH4. One of the contributors to GHG generation is the open dumping of Municipal Solid Waste (MSW), particularly because much of the waste is organic. It undergoes anaerobic decomposition, leading to the formation of GHGs, particularly methane. However, CH4 has a high potential for energy generation, and if harnessed properly, it can be highly beneficial. This study aims to assess the total air pollutants emitted from the landfill gas (LFG), including methane (CH4), carbon dioxide (CO2), and nonmethane organic compounds (NMOC) at the Regional Piyungan landfill in D.I. Yogyakarta province. The study also projected the year when the production of these gaseous pollutants would peak and when they are expected to be exhausted. Additionally, the study aimed to identify the potential health problems and clinical codification caused by these gaseous pollutants. To achieve these objectives, the LandGEM 3.03 version of the model developed by USEPA was used for the period 2023-2071. Clinical coding used the 2019 version of the ICD-10 reference. The estimated values for total LFG were 1.648E+04 (2024) and 1.584E+04 (2025) Mg/year, while CH4 was estimated at 4.403E+03 (2024) and 4.230E+03 (2025) Mg/year. CO2 was estimated to be 1,208E+04 (2024) and 1,161E+04 (2025) Mg/year, and NMOC was projected at 2,839E+01 (2024) and 2,727E+01 (2025) Mg/year. Some of the toxic effects that can occur cause respiratory, visual, and mental disorders with a variety of clinical codes.
显示更多 [+] 显示较少 [-]Ecological Regeneration of Wetland: Case Study of Kanwar Lake, Begusarai
2024
Sameen Fatma and Md. Danish
The wetlands are the partially water-submerged environments that are highly productive, and support fauna and flora species in significant numbers that are dependent for their survival on the organic production of wetlands. Kanwar Lake is situated about 22 kilometers to the northwest of Begusarai. The Gandak River, a tributary of the Ganges, meanders across the area, creating the largest oxbow lake in Asia. It is a natural body of water that is significant on many different levels, including ecological, floral, faunal, geomorphological, and zoological. In 1989, the state government of Bihar designated Kanwar as a protected area for avian species. It has been considered a Ramsar site since 1987, but the wetland was not one of the 13 designated sites. In 1984, the lake’s area was 6,786 hectares (ha), but by 2004, it had shrunk to 6,043.825 ha. Only 2,032 hectares remained of the original lake area by 2012. Wealthy farmers and locals have rapidly colonized the lake bed. Lake biodiversity has declined as weeds have grown across the wetland. Widespread deforestation, overgrazing, unsustainable agricultural methods and over-exploitation of biomass for wood, fodder, and timber have stripped the land of its natural vegetative cover and exacerbated erosion. The research deals with the ecological study of the area and how urbanization has caused impacts on it. It focuses on how this has caused the deterioration of the lake and the measures for restoring the lake ecology, safeguarding the trend of urbanization. After analyzing the major key issues and analyzing the issues at the edge of the lake and around the Manjhaul, some of the major findings conclude that there is a need for stormwater management of the whole city, restoration of Kanwar wetland, and industrial control around the lake.
显示更多 [+] 显示较少 [-]Impact of Cadmium-Induced Stress on Physiological Traits with Induced Osmolyte and Catalase-Mediated Antioxidative Defense in Rice (Oryza sativa L.)
2024
J. Yomso and A. Siddique
Cadmium is one of the most carcinogenic and hazardous heavy metals on the earth for causes many serious diseases and disorders in the plant body. The presence of Cd in the soil is equally harmful to the production of rice crops and human beings. A pot experiment was conducted to analyze the consequences of cadmium-induced stress on the antioxidative defense system in rice plants. The assessment of antioxidative defense mechanism based on the cadmium-induced stress in the range of 100 to 300 ppm while the parameters, Chlorophyll Content Index (SPAD), nitrogen (%), relative water content (%), membrane stability index (%), proline content (μg.g-1), and catalase activity (nm H2O2 mg-1.min-1) were used. The highest reduction in the Chlorophyll Content Index (CCI), nitrogen (%), RWC (%), and MSI (%) was recorded at the highest concentrations of Cd Cl2 (300 ppm). However, at the same time, an increase in proline content (μg.g-1) and catalase activity (nm H2O2 mg-1.min-1) were also detected at all the intervals of the study. The activity of CCI, amino acid, and enzyme were presented in % increase/decrease over the control of Cd-induced stress in rice plants. The reduction (%) in CCI (SPAD) and RWC (%) was recorded maximum at 75 Days after transplanting (DAT), while nitrogen (%) and MSI (%) were recorded at 50 DAT. However, the increase (%) in proline and Catalase activity was maximum at 75 and 50 DAT.
显示更多 [+] 显示较少 [-]Determination of Mycotoxigenic Fungi and Total Aflatoxins in Stored Corn from Sites of Puebla and Tlaxcala, Mexico
2024
K. Saez-Gomez, R. Avila-Sosa, M. Huerta-Lara, F. Avelino-Flores and R. Munguia-Pérez
This paper aimed to evaluate the contamination with mycotoxigenic fungi and total aflatoxins in stored corn from different sites in Puebla and Tlaxcala, Mexico. Methodology. The study was conducted at two sites in Puebla (San Salvador El Seco and Junta Auxiliar La Resurrección) and two sites in Tlaxcala (Tlaltepango and Nativitas). A total of 80 samples of stored corn were collected. Identification of Aspergillus flavus was performed by microculture techniques and specific taxonomic keys (macromorphological and micromorphological). Then, samples of contaminated corn were selected, and aflatoxin production was confirmed using a direct solid-phase ELISA kit. A total of 25 A. flavus strains were identified. Other possible mycotoxin-producing fungi were Penicillium (n=52) and Fusarium (n=19). Regarding total aflatoxin contamination, all samples were contaminated within a range of 1.589 to 11.854 μg/kg, and the average concentration was 6.3 μg/kg corn. Implications. The detection of mycotoxigenic fungi in the samples tested and of aflatoxins in corn highlights the importance of monitoring these fungi. Since food safety is at risk, it shows the need for methods to control these fungi and their metabolites.
显示更多 [+] 显示较少 [-]Selection of White-Rot Fungi for Decolorization of Palm Oil Mill Effluent and Evaluation of Biodegradation and Biosorption Processes
2024
Sanhathai Ridtibud, Nuttika Suwannasai, Apichaya Sawasdee, Verawat Champreda, Cherdchai Phosri, Sarper Sarp, Nipon Pisutpaisal and Siriorn Boonyawanich
Ten species of white-rot fungi were evaluated for their ability to decolorization of palm oil mill effluent. The highest decolorization efficiency was found with Trametes elegans (PP17-06), followed by Ganoderma sp.2 (PW17-06) and Ganoderma sp.2 (PW17-177), respectively. T. elegans was further evaluated for the long-term performance of decolorization for 24 d. The optimal retention time for the decolorization was 8 d, with a color removal efficiency of 47.7%. Beyond 18 d of incubation, decolorization efficiency was reduced due to the autolysis of enzymes. During the biodegradation process, manganese peroxidase enzyme activities reached a maximum of 36.03 U.L−1. However, no significant laccase and lignin peroxidase activities were observed. T. elegans was also assessed for decolorization performance through biosorption on mycelial biomass. The synthesis of the enzyme was prevented by exposing the mycelium to HgCl2. Within an optimal contact time of 2 d, decolorization efficiency reached 12.5% with ADMI reduction from 4259.0 (±20.1) ADMI to 3727 (±104.04) ADMI. Results indicate that the adsorption capacity was reached at this time, and no significant color removal can be achieved by biomass. Results obtained in this study showed the potential of T. elegans in decolorizing palm oil mill effluent.
显示更多 [+] 显示较少 [-]An Investigation in Temperature Data Analysis of Middle Atmospheric Variation from SABER Satellite
2024
E. Raghavendrakumar, V. Kamalakar and K. Sunil Kumar
This paper focuses on significant data analysis for middle atmospheric variations of height of 0 km 100 km. This data was downloaded from the SABER satellite NASA and analyzed with the help of MATLAB. The analysis includes the determination of propagation of wavelengths and oscillations for the semi-annual oscillation (SAO), Annual oscillations (AO), quasi-annual oscillations (QBO), EINIO southern oscillation (ENSO) from the period of Jan 2002 to Dec 2022 past twenty years data. The monthly mean Temperatures, monthly ozone deviations, and overall mean temperatures with standard deviations are estimated for the following altitude regions concerning troposphere (0-20km), stratospheric (21-50 km), mesospheric (51-90 km), and thermospheric regions (91-105 km). However, the results proved that the maximum temperature variations would affect the ozone depletion for the areas concerning the altitude height of 15-40 km region between troposphere and stratospheric in the temperature range of 260K, and average deviations are found in the order of 0.000010 μm for the troposphere region. The presence of harmful gases such as CO, CO2, NOx, H, and CH4 released from the automobile and powerplant industry may deplete the ozone layer and cause adverse effects.
显示更多 [+] 显示较少 [-]