细化搜索
结果 2991-3000 的 5,014
Study on habitat suitability of overwintering cranes based on landscape pattern change—a case study of typical lake wetlands in the middle and lower reaches of the Yangtze River 全文
2019
Cui, Yanglin | Dong, Bin | Chen, Lingna | Gao, Xiang | Cui, Yuhuan
Shengjin Lake wetland is located in the middle and lower reaches of the Yangtze River in China. It is a typical lake-type wetland and is also an ideal place for rare cranes to overwintering. The changes of wetland landscape are closely related to the habitat quality of wintering cranes. It is of great significance to study the habitat change of wintering cranes in wetland for wetland ecological restoration and restoration. In this paper, we analyze four kinds of winter cranes and wetland landscape pattern types from the years 1986 to 2015. Also, we adopted the Pearson correlation analysis method to analyze the relationship between wetland landscape types and crane population, and the main landscape types of cranes habitat were obtained. We selected disturbance degree, food richness, vegetation cover, and hydrological condition as the main factors affecting wintering habitat of cranes. We established a habitat suitability index model for wintering cranes and generated habitat suitability assessment maps by ArcGIS. The results show that the change of landscape pattern in Shengjin Lake protected area was obvious, the number of wetland patches increased, the fragmentation degree of landscape increased, the landscape patch difference became smaller, and the diversity index and evenness index increased gradually. From 1986 to 2015, the number of wintering cranes decreased and the habitat suitability index of wintering cranes decreased from 0.845 to 0.465, and the habitat suitability of wintering cranes fell from 13,577.11 to 7424.42 ha, which showed the overall habitat deteriorated significantly and had a positive correlation between the crane population and habitat suitability.
显示更多 [+] 显示较少 [-]Variations in dissolved inorganic carbon species in effluents from large-scale municipal wastewater treatment plants (Qingdao, China) and their potential impacts on coastal acidification 全文
2019
Liu, Xiang-Yu | Yang, Xu-Feng | Li, Yun-Xiao | Zang, Han | Zhang, Long-Jun
With rapid development of global wastewater treatment plants (WWTPs), acidification and enhanced CO₂ release in receiving waters caused by high-CO₂ treated wastewater input have raised concerns. Insights into the variations in dissolved inorganic carbon (DIC) species in treated wastewater contribute to understanding the mechanisms of the acidification process. Here, we investigated three large-scale municipal WWTPs that discharged into the coast of Qingdao, China, for variations in effluent DIC species and their control mechanisms. The results showed that the effluent DIC concentrations, with a range of 2554–5718 μmol/L, significantly exceeded the concentration in seawater and mainly increased from winter to spring and decreased from summer to autumn. The effluent DIC and its δ¹³CDIC showed a good negative correlation. The ratios of effluent DIC to total alkalinity (DIC/TAlk) ranged from 1.00 to 1.24, and the proportions of CO₂ in DIC ranged from 0.9 to 19.7%; both sets of values significantly exceeded those in seawater. The proportions of CO₃²⁻ in DIC were only ~ 0.4%. These features determined that the CO₂ concentrations in effluents fluctuated from 3 to 80 times the concentration in seawater, whereas the CO₃²⁻ concentrations were less than 1/15 of those in seawater. Organic matter degradation and nitrogen removal processes made important contributions to the high effluent CO₂ concentrations. The increase in solubility induced by decreased temperature may be the main cause for the higher effluent CO₂ concentrations during winter as well as spring months with low effluent temperatures. Correspondingly, the effluent pH values were significantly lower than the seawater pH values and showed a good negative logarithmic correlation with the DIC/TAlk values, reflecting the control of DIC species on the pH values in treated wastewater. Variations in DIC species in treated wastewater can cause changes in the affected region and the degree of the induced acidification in receiving waters.
显示更多 [+] 显示较少 [-]Virulence profiles of vancomycin-resistant enterococci isolated from surface and ground water utilized by humans in the North West Province, South Africa: a public health perspective 全文
2019
Matlou, Daniel Pheeha | Bissong, Marie Ebob AgborTabot | Tchatchouang, Christ-Donald Kaptchouang | Adem, Mohomud Rashid | Foka, Frank Eric Tatsing | Kumar, Ajay | Ateba, Collins Njie
Vancomycin-resistant enterococci (VRE) have been responsible for numerous outbreaks of serious infections in humans worldwide. Enterococcus faecium and Enterococcus faecalis are the principal species that are frequently associated with vancomycin resistance determinants, thus usually implicated in hospital- and community-acquired infections in humans. The study aim was to determine the antibiotic resistance and virulence profiles of VREs isolated from surface and groundwater samples that are used by humans in the North West Province, South Africa. A total of 170 water samples were collected and analyzed. Eighty-one potential isolates were screened for characteristics of Enterococcus species using preliminary biochemical tests, PCR assays and sequence analysis. The antimicrobial resistance profiles of the isolates against nine antibiotics were determined and a dendrogram was generated to access the relatedness of the isolates. The isolates were screened for the presence of antibiotic resistance and virulence genes by multiplex PCR analysis. A total of 56 isolates were confirmed as Enterococcus species and the proportion of E. faecium (46.9%) was higher than E. faecalis (29%) and E. saccharolyticus (1.2%). Sequence data of E. faecium, E. faecalis, and E. saccharolyticus isolates revealed 97 to 98% similarities to clinical strains deposited in NCBI Genbank. Large proportions (44; 78.6%) of the isolates were resistant to vancomycin while 16 and 3.6% of the isolates possessed the vanA and vanB genes respectively. The MAR phenotype Vancomycin-Nalidixic Acid-Streptomycin-Chloramphenicol-Ampicillin-Oxytetracycline-Gentamycin-Nitrofurantoin-Sulphamethoxazole indicated that some isolates were resistant to all of the nine antibiotics tested. Cluster analysis of antibiotic resistance data revealed two major clusters. Sixteen (36.4%), 14 (27.3%), 3 (6.8%), and 2 (4.5%) of the VRE isolates possessed the gel, asa1, hyl, and esp virulence genes respectively while the cylA gene was not detected in the study. Multiple antibiotic-resistant enterococci were also resistant to vancomycin and possessed virulence determinants indicating that they can pose severe public health complications on individuals who consume contaminated water.
显示更多 [+] 显示较少 [-]Carbon footprint accounts of Pakistan: an input-output life cycle assessment model 全文
2019
Zeshan, Muhammad
The Paris agreement (2015) seems a significant achievement towards a global mitigation policy to climate change. However, implementing the promised Intended Nationally Determined Contribution (INDC) targets by the participating countries has become a real challenge. In this aspect, the input-output life cycle assessment (IO-LCA) model provides an important assessment mechanism to design suitable abatement policies limiting the rising greenhouse gas (GHG) emissions. The present paper develops an IO-LCA model for Pakistan and estimates all the direct and indirect GHG emissions caused by all the production activities during all the stages of production. This task is achieved in three phases. In phase 1, the Pakistan input-output table (IOT) is constructed. In phase 2, the GHG environmental satellite accounts are created for each sector in the economy. In phase 3, the GHG emissions are linked to different categories of final demand.
显示更多 [+] 显示较少 [-]Urea/ZnCl2 in situ hydrothermal carbonization of Camellia sinensis waste to prepare N-doped biochar for heavy metal removal 全文
2019
Guo, Shasha | Gao, Yuefang | Wang, Yancheng | Liu, Zhengjun | Wei, Xingneng | Peng, Pai | Xiao, Bin | Yang, Yajun
Environmental benefits of biochar require a simple and effective method for preparation of functional N-doped biochar. In this study, urea/ZnCl₂ was developed to prepare N-doped biochar via in situ hydrothermal carbonization (HTC) of Camellia sinensis waste at 120–280 °C for 2 h under 1.0–9.8 MPa. Physicochemical and structural properties of the N-doped biochar were investigated by Raman spectra, elemental analysis, BET surface area, SEM, TEM, XRD, and XPS. The results showed that the N content in biochar could reach up to 7.79% at 280 °C. Surface chemistry suggested that pyridinic N, pyrollic N, and graphitic N were the major N species on the biochar. Moreover, the N-doped biochar was successfully employed to remove metal ions Cu²⁺, Pb²⁺, Zn²⁺, and Cr⁶⁺. Adsorption data fit closely to the pseudo-second-order kinetic equation and the Langmuir adsorption isotherm model for all metal ions.
显示更多 [+] 显示较少 [-]The viscosity behaviors of bacterial suspensions or extracellular polymeric substances and their effects on aerobic granular sludge 全文
2019
Yang, Xilan | Xu, Tianguang | Cao, Pei | Qiao, Kai | Wang, Lei | Zhao, Tingting | Shu, Ken'ei
Although the viscosity behavior of bacteria and extracellular polymeric substances (EPS) in flocculent activated sludge (FAS) and aerobic granular sludge (AGS) has been investigated, no studies have explored the role of viscosity in microbial attachment in pure culture. This study investigated the viscosity behavior of bacteria and EPS. The results showed that bacteria and their EPS exhibited non-Newtonian fluid and shear-thinning behavior. The viscosity of bacteria and EPS was 1.55–3.80 cP and 1.10–2.40 cP, respectively, while the attachment of bacteria (optical density at 600 nm) was 0.1426–3.1015. Bacteria with high attachment secreted EPS with a higher viscosity (2.40 cP), whereas those with weak attachment expressed EPS with a lower viscosity (1.10 cP). Viscosity and microbial attachment or extracellular polysaccharide (PS) content were significantly positively correlated. PS content was the source of bacterial viscosity, and β-polysaccharide played a more important role in viscosity and microbial attachment than α-polysaccharide. Thus, viscosity plays a critical role in microbial attachment, and high viscosity and PS content result in high microbial attachment, which is beneficial to the granulation process of AGS.
显示更多 [+] 显示较少 [-]Silver prices and solar energy production 全文
2019
Apergis, Iraklis | Apergis, Nicholas
The goal of this paper is to identify, for the first time, the role of solar production in driving silver prices. The empirical analysis makes use of the ARDL model and the combined cointegration. The results, spanning the period 1990–2016, document that stronger solar installed capacities, as well as higher gross electricity production from solar sources, lead to higher silver prices. The findings could be of great importance to silver suppliers and to energy policymakers and regulators, as well as to solar panel manufacturers.
显示更多 [+] 显示较少 [-]Co-exposure to environmental endocrine disruptors in the US population 全文
2019
Chen, Lin | Luo, Kai | Etzel, Ruth | Zhang, Xiaoyu | Tian, Ying | Zhang, Jun
Exposure to environmental endocrine disruptors (EEDs) has been linked to adverse health outcomes. The vast majority of studies examined one class of EEDs at a time but humans often are exposed to multiple EEDs at the same time. It is, therefore, important to know the co-exposure status of multiple EEDs in an individual, to preclude and control for potential confounding effects posed by co-exposed EEDs. This study examined the concentrations of seven classes of EEDs in the US population utilizing the data from the National Health and Nutrition Examination Survey (NHANES), 2009–2014 survey cycles. We applied linear correlation and cluster analysis to characterize the correlation profile and cluster patterns of these EEDs. We found that EEDs with a similar structure are often highly correlated. Among between-class correlations, mercury and perfluoroalkyl substances (PFAS) and cadmium and polycyclic aromatic hydrocarbons (PAHs) were two significantly correlated EEDs. In epidemiologic studies, measurement and control for co-exposure to pollutants, especially those with similar biological effects, are critical when attempting to make causal inferences. Appropriate statistical methods to handle within- and between-class correlations are needed.
显示更多 [+] 显示较少 [-]Water pollution and observation of acquired antibiotic resistance in Bayou Lafourche, a major drinking water source in Southeast Louisiana, USA 全文
2019
Bird, Kyle | Boopathy, Raj | Nathaniel, Rajkumar | LaFleur, Gary
Antibiotics are known to enter the environment, not only by human excretion but also through livestock/aquaculture, healthcare facilities, and pharmaceutical industry waste. Once in the environment, antibiotics have the ability to provide a selective pressure in microbial communities thus selecting for resistance. Bayou Lafourche of Southeastern Louisiana serves as the raw source of drinking water for 300,000 people in the region and has previously been shown to receive high amounts of fecal contamination. Four sites along the bayou and one site from its input source on the Mississippi River were monitored for water chemistry, total and fecal coliform estimates, and presence of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARG) for a period of 1 year. Four waste-associated bacterial isolates were tested for resistance to antibiotics (tetracycline, sulfamethoxazole/trimethoprim, cefoxitin, meropenem, imipenem, erythromycin, and vancomycin). Resistant bacteria were further examined with PCR/electrophoresis to confirm the presence of antibiotic resistance genes (Sul1, tet(A), tet(W), tet(X), IMP, KPC, and OXA-48). The bayou appears to meet the Louisiana Department of Environmental Quality (LDEQ) criteria for water chemistry, yet fecal coliforms were consistently higher than LDEQ thresholds, thus indicating fecal contamination. Enterobacteriaceae isolates showed 13.6%, 10.9%, and 19.8% resistant to tetracycline, sulfamethoxazole/trimethoprim, and cefoxitin, respectively, and 11 isolates were confirmed for presence of either tet(A) or Sul1 resistance genes. High fecal coliforms and presence of ARB/ARG may both indicate a presence of anthropogenic or agricultural source of fecal contamination.
显示更多 [+] 显示较少 [-]Different pollutant removal efficiencies of artificial aquatic plants in black-odor rivers 全文
2019
Chen, Qingfeng | Yang, Zhao | Qi, Kemei | Zhao, Changsheng
Black-odor rivers have become a prominent environmental problem, especially for developing countries. A laboratory experiment was conducted to determine the optimum operating parameters of artificial aquatic plants (AAP) to provide a theoretical and scientific basis for their application in black-odor rivers. The purification mechanism of operating parameters for AAP was also explored at the micro-organic and genetic levels by high-throughput sequencing. Chemical oxygen demand (COD) and ammonia nitrogen (NH₄⁺-N) were measured in systems with different AAP lengths and pH. After 24 days, the best removal efficiencies of APP for COD and NH₄⁺-N were 90.07 and 82.40% for 100 cm and 90.70 and 91.90% for pH values of 8.0–9.0, respectively. High-throughput sequencing analysis revealed that the relative abundance of Flavobacterium in the AAP was 7.80% at 50 cm, while the proportion increased to 29.30% at 100 cm. The abundance of microorganisms improved continuously with increased length, and the ratio of Acinetobacter increased obviously at pH 8.0–9.0 relative to pH 6.0–7.0. Furthermore, the AAP were used in Qihe Artificial Wetland in Shandong Province, China. The results revealed that the average removal efficiencies of AAP for COD and NH₄⁺-N were 27.75 and 14.34%, respectively, in the artificial wetland. Therefore, AAP was beneficial to the growth of bacteria and could be used in the treatment of black-odor rivers.
显示更多 [+] 显示较少 [-]