细化搜索
结果 301-310 的 3,981
Ozone stomatal flux and O3 concentration-based metrics for Astronium graveolens Jacq., a Brazilian native forest tree species 全文
2016
Cassimiro, Jéssica C. | Moura, Bárbara B. | Alonso, Rocío | Meirelles, Sérgio T. | Moraes, Regina M.
The current levels of surface ozone (O3) are high enough to negatively affect trees in large regions of São Paulo State, southeastern Brazil, where standards for the protection of vegetation against the adverse effects of O3 do not exist. We evaluated three O3 metrics – phytotoxic ozone dose (POD), accumulated ozone exposure over the threshold of 40 ppb h (AOT40), and the sum of all hourly average concentrations (SUM00) – for the Brazilian native tropical tree species Astronium graveolens Jacq. We used the DO3SE (Deposition of Ozone for Stomatal Exchange) model and calculated PODY for different thresholds (from 0 to 6 mmol O3 m−2 PLA s−1), evaluating the model's performance through the relationship between measured and modelled conductance. The response parameters were: visible foliar injury, considered as incidence (% injured plants), severity (% injured leaves in relation to the number of leaves on injured plants), and leaf abscission. The model performance was suitable and significant (R2 = 0.58; p < 0.001). POD0 was better correlated to incidence and leaf abscission, and SUM00 was better correlated to severity. The highest values of O3 concentration-based metrics (AOT40 and SUM00) did not coincide with those of POD0. Further investigation may improve the model and contribute to the proposition of a national standard for the protection of native species.
显示更多 [+] 显示较少 [-]Improving the ecological relevance of toxicity tests on scleractinian corals: Influence of season, life stage, and seawater temperature 全文
2016
Hédouin, Laetitia S. | Wolf, Ruth E. | Phillips, Jeff | Gates, Ruth D.
Metal pollutants in marine systems are broadly acknowledged as deleterious: however, very little data exist for tropical scleractinian corals. We address this gap by investigating how life-history stage, season and thermal stress influence the toxicity of copper (Cu) and lead (Pb) in the coral Pocillopora damicornis. Our results show that under ambient temperature, adults and larvae appear to tolerate exposure to unusually high levels of copper (96 h-LC50 ranging from 167 to 251 μg Cu L−1) and lead (from 477 to 742 μg Pb L−1). Our work also highlights that warmer conditions (seasonal and experimentally manipulated) reduce the tolerance of adults and larvae to Cu toxicity. Despite a similar trend observed for the response of larvae to Pb toxicity to experimentally induced increase in temperature, surprisingly adults were more resistant in warmer condition to Pb toxicity. In the summer adults were less resistant to Cu toxicity (96 h-LC50 = 175 μg L−1) than in the winter (251 μg L−1). An opposite trend was observed for the Pb toxicity on adults between summer and winter (96 h-LC50 of 742 vs 471 μg L−1, respectively). Larvae displayed a slightly higher sensitivity to Cu and Pb than adults. An experimentally induced 3 °C increase in temperature above ambient decreased larval resistance to Cu and Pb toxicity by 23–30% (96 h-LC50 of 167 vs 129 μg Cu L−1 and 681 vs 462 μg Pb L−1).Our data support the paradigm that upward excursions in temperature influence physiological processes in corals that play key roles in regulating metal toxicity. These influences are more pronounced in larva versus adult corals. These findings are important when contextualized climate change-driven warming in the oceans and highlight that predictions of ecological outcomes to metal pollutants will be improved by considering environmental context and the life stages of organism under study.
显示更多 [+] 显示较少 [-]Particle deposition in a peri-urban Mediterranean forest 全文
2016
Urban and peri-urban forests provide a multitude of Ecosystem Services to the citizens. While the capacity of removing carbon dioxide and gaseous compounds from the atmosphere has been tested, their capacity to sequestrate particles (PM) has been poorly investigated. Mediterranean forest ecosystems are often located nearby or inside large urban areas. This is the case of the city of Rome, Italy, which hosts several urban parks and is surrounded by forested areas. In particular, the Presidential Estate of Castelporziano is a 6000 ha forested area located between the Tyrrhenian coast and the city (25 km downtown of Rome). Under the hypothesis that forests can ameliorate air quality thanks to particle deposition, we measured fluxes of PM1, 2.5 and 10 with fast optical sensors and eddy covariance technique. We found that PM1 is mainly deposited during the central hours of the day, while negligible fluxes were observed for PM 2.5 and 10. A Hybrid Single–Particle Lagrangian Integrated Trajectory model (HYSPLIT v4) simulated PM emission from traffic areas in the city of Rome and showed that a significant portion of PM is removed by vegetation in the days when the plume trajectory meets the urban forest.
显示更多 [+] 显示较少 [-]TBBPA exposure during a sensitive developmental window produces neurobehavioral changes in larval zebrafish 全文
2016
Tetrabromobisphenol A (TBBPA), one of the most widely used brominated flame retardants (BFRs), is a ubiquitous contaminant in the environment and in the human body. This study demonstrated that zebrafish embryos exposed to TBBPA during a sensitive window of 8–48 h post-fertilization (hpf) displayed morphological malformations and mortality. Zebrafish exposed exclusively between 48 and 96 hpf were phenotypically normal. TBBPA was efficiently absorbed and accumulated in zebrafish embryos, but was eliminated quickly when the exposure solution was removed. Larval behavior assays conducted at 120 hpf indicated that exposure to 5 μM TBBPA from 8 to 48 hpf produced larvae with significantly lower average activity and speed of movement in the normal condition than in those exposed from 48 to 96 hpf. Specifically, 8–48 hpf-exposed larvae spent significantly less time in both activity bursts and gross movements compared to control or 48–96 hpf exposed larvae. Consistent with the motor deficits, TBBPA induced apoptotic cell death, delayed cranial motor neuron development, inhibited primary motor neuron development and loosed muscle fiber during the early developmental stages. To further explore TBBPA-induced developmental and neurobehavioral toxicity, RNA-Seq analysis was used to identify early transcriptional changes following TBBPA exposure. In total, 1969 transcripts were significantly differentially expressed (P < 0.05, FDR < 0.05, 1.5-FC) upon TBBPA exposure. Functional and pathway analysis of the TBBPA transcriptional profile identified biological processes involved in nerve development, muscle filament sliding and contraction, and extracellular matrix disassembly and organization changed significantly. In addition, TBBPA also led to an elevation in the expression of genes encoding uridine diphosphate glucuronyl transferases (ugt), which could affect thyroxine (T4) metabolism and subsequently lead to neurobehavioral changes. In summary, TBBPA exposure during a narrow, sensitive developmental window perturbs various molecular pathways and results in neurobehavioral deficits in zebrafish.
显示更多 [+] 显示较少 [-]Paper-disc method: An efficient assay for evaluating metal toxicity to soil algae 全文
2016
The probabilistic ecological risk assessment using terrestrial toxicity data has been mainly based on microfauna or mesofauna. Soil algae, which are food source for microfauna and mesofauna, may be alternatively used for assessing soil toxicity. However, there are no internationally recommended guidelines for soil algal bioassays, and the collection of algae from the test soils has some limitations. In this study, we suggested the paper-disc method as an easy-to-use alternative. This method has been widely used for testing the antibacterial toxicity of various chemicals in agar media by measuring the diameter of the inhibition zone around the disc. We adapted the paper-disc method for screening the toxicity of copper (Cu) and nickel (Ni) to the soil alga Chlorococcum infusionum using various evaluation endpoints, such as growth zone, chlorophyll fluorescence, and photosynthetic activity. Chlorophyll fluorescence and photosynthetic activity decreased with the increasing concentrations of Cu+2 or Ni+2 contaminated soils. Algal growth zone was analyzed visually and showed similar results to those of chlorophyll fluorescence. The direct ethanol extraction method and indirect culture medium extraction method were similarly effective; however, the former was easier to perform, while the latter might facilitate the analysis of additional endpoints in future studies. Overall, the results suggested that the paper-disc method was not only a user-friendly assay for screening soil toxicity, but also effective due to its association with indirect soil quality indicators.
显示更多 [+] 显示较少 [-]Effect of organochlorine pesticides exposure on the maize root metabolome assessed using high-resolution magic-angle spinning 1H NMR spectroscopy 全文
2016
1H-HRMAS NMR-based metabolomics was used to better understand the toxic effects on maize root tips of organochlorine pesticides (OCPs), namely lindane (γHCH) and chlordecone (CLD). Maize seedlings were exposed to 2.5 μM γHCH (mimicking basic environmental contaminations) for 7 days and compared to 2.5 μM CLD and 25 μM γHCH for 7 days (mimicking hot spot contaminations). The 1H-HRMAS NMR-based metabolomic profiles provided details of the changes in carbohydrates, amino acids, tricarboxylic acid (TCA) cycle intermediates and fatty acids with a significant separation between the control and OCP-exposed root tips. First of all, alterations in the balance between glycolysis/gluconeogenesis were observed with sucrose depletion and with dose-dependent fluctuations in glucose content. Secondly, observations indicated that OCPs might inactivate the TCA cycle, with sizeable succinate and fumarate depletion. Thirdly, disturbances in the amino acid composition (GABA, glutamine/glutamate, asparagine, isoleucine) reflected a new distribution of internal nitrogen compounds under OCP stress. Finally, OCP exposure caused an increase in fatty acid content, concomitant with a marked rise in oxidized fatty acids which could indicate failures in cell integrity and vitality. Moreover, the accumulation of asparagine and oxidized fatty acids with the induction of LOX3 transcription levels under OCP exposure highlighted an induction of protein and lipid catabolism. The overall data indicated that the effect of OCPs on primary metabolism could have broader physiological consequences on root development. Therefore, 1H-HRMAS NMR metabolomics is a sensitive tool for understanding molecular disturbances under OCP exposure and can be used to perform a rapid assessment of phytotoxicity.
显示更多 [+] 显示较少 [-]Comprehensive national database of tree effects on air quality and human health in the United States 全文
2016
Trees remove air pollutants through dry deposition processes depending upon forest structure, meteorology, and air quality that vary across space and time. Employing nationally available forest, weather, air pollution and human population data for 2010, computer simulations were performed for deciduous and evergreen trees with varying leaf area index for rural and urban areas in every county in the conterminous United States. The results populated a national database of annual air pollutant removal, concentration changes, and reductions in adverse health incidences and costs for NO2, O3, PM2.5 and SO2. The developed database enabled a first order approximation of air quality and associated human health benefits provided by trees with any forest configurations anywhere in the conterminous United States over time.Comprehensive national database of tree effects on air quality and human health in the United States was developed.
显示更多 [+] 显示较少 [-]Characterization of phenol and cresol biodegradation by compound-specific stable isotope analysis 全文
2016
Wei, Xi | Gilevska, Tetyana | Wetzig, Felix | Dorer, Conrad | Richnow, Hans-Hermann | Vogt, Carsten
Microbial degradation of phenol and cresols can occur under oxic and anoxic conditions by different degradation pathways. One recent technique to take insight into reaction mechanisms is compound-specific isotope analysis (CSIA). While enzymes and reaction mechanisms of several degradation pathways have been characterized in (bio)chemical studies, associated isotope fractionation patterns have been rarely reported, possibly due to constraints in current analytical methods. In this study, carbon enrichment factors and apparent kinetic isotope effects (AKIEc) of the initial steps of different aerobic and anaerobic phenol and cresols degradation pathways were analyzed by isotope ratio mass spectrometry connected with liquid chromatography (LC-IRMS). Significant isotope fractionation was detected for aerobic ring hydroxylation, anoxic side chain hydroxylation, and anoxic fumarate addition, while anoxic carboxylation reactions produced small and inconsistent fractionation. The results suggest that several microbial degradation pathways of phenol and cresols are detectable in the environment by CSIA.
显示更多 [+] 显示较少 [-]Native Prussian carp (Carassius gibelio) health status, biochemical and histological responses to treated wastewaters 全文
2016
Topić Popović, Natalija | Strunjak-Perović, Ivančica | Barišić, Josip | Kepec, Slavko | Jadan, Margita | Beer-Ljubić, Blanka | Matijatko, Vesna | Palić, Dušan | Klobučar, Goran | Babić, Sanja | Gajdoš Kljusurić, Jasenka | Čož-Rakovac, Rozelindra
The aim of this study was to assess the impact of treated wastewaters on native wild Prussian carp inhabiting effluent-receiving waters (ERC) receiving municipal and sugar plant treated wastewaters, further downstream waters (DW), and a detached canal unaffected by the WWTP activities. To that end, general fish health status was determined, including plasma biochemical, haematological, oxidative stress and tissue histopathological indices, over three seasons. The greatest tissue alterations were in fall in ERC during sugar beet processing, as hypertrophy of gill epithelial and interlamellar cells, necrosis and lymphocytic infiltration, hyperplasia and hypertrophy of renal tubules, distention of hepatic sinusoids. In fall the lowest leukocytes, lymphocytes and granulocytes (2467 ± 565, 1333 ± 264, 1133 ± 488 cells/μL respectively), as well as highest plasma ALP (52.7 ± 19.39 U/L) were measured. ERC in fall had the highest ammonium (20 mg/L), nitrite (1.48 mg/L), nitrate (13.4 mg/L), and lowest dissolved O2 (1.23 mg/L). Gill, kidney and liver alterations, and the highest plasma cholesterol (9.1 ± 1.98 mmol/L) were noted in DW fish in fall. Tissue morphology during sugar cane processing seems a consequence of cellular and structural tissue integrity loss. Structural heterogeneity of gills and spleen was enhanced with increasing concentrations of heavy metals and correlated with oxidative stress (SOD 392.5 ± 77.28 U/L). Monogenean infestation was moderate in ERC fish in all seasons compared with DW fish. Prussian carp biological responses to multiple stressors, measured by the effects of WWTP on blood and tissue parameters, reached far downstream and were not of localized nature. This study demonstrated that in aquatic environments impacted with complex contaminants acting synergistically, causal relationships between biological responses and environmental stressors should be interpreted. Integrated histopathological, haematological and biochemical findings are valuable biomarkers for native fish adaptive patterns and monitoring of water quality/pollution of freshwater ecosystems.
显示更多 [+] 显示较少 [-]Spatial pattern of heavy metals accumulation risk in urban soils of Beijing and its influencing factors 全文
2016
Liu, Rui | Wang, Meie | Chen, Weiping | Peng, Chi
Accumulations of heavy metals in urban soils are highly spatial heterogeneity and affected by multiple factors including soil properties, land use and pattern, population and climatic conditions. We studied accumulation risks of Cd, Cu, Pb and Zn in unban soils of Beijing and their influencing based on the regression tree analysis and a GIS-based overlay model. Result shows that Zinc causes the most extensive soil pollution and Cu result in the most acute soil pollution. The soil's organic carbon content and CEC and population growth are the most significant factors affecting heavy metal accumulation. Other influence factors in land use pattern, urban landscape, and wind speed also contributed, but less pronounced. The soils in areas with higher degree of urbanization and surrounded by intense vehicular traffics have higher accumulation risk of Cd, Cu, Pb, and Zn.
显示更多 [+] 显示较少 [-]