细化搜索
结果 301-310 的 4,896
Uptake and metabolism of clarithromycin and sulfadiazine in lettuce
2019
Tian, Run | Zhang, Rong | Uddin, Misbah | Qiao, Xianliang | Chen, Jingwen | Gu, Gege
Antibiotics are introduced into agricultural fields by the application of manure or biosolids, or via irrigation using reclaimed wastewater. Antibiotics can enter the terrestrial food chains through plant uptake, which forms an alternative pathway for human exposure to antibiotics. However, previous studies mainly focused on detecting residues of the parent antibiotics, while ignoring the identification of antibiotics transformation products in plants. Here, we evaluated the uptake and metabolism of clarithromycin (CLA) and sulfadiazine (SDZ) in lettuce under controlled hydroponic conditions. The antibiotics and their metabolites were identified by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS/MS) and ultra-performance liquid chromatograph Micromass triple quadrupole mass spectrometry (UPLC−QqQ−MS/MS). The structure of CLA, SDZ and N-acetylated SDZ were confirmed with synthesized standards, verifying the reliability of the identification method. Eight metabolites of CLA and two metabolites of SDZ were detected in both the leaves and roots of lettuce. The metabolites of CLA included phases I and II transformation products, while only phase II metabolites of SDZ were observed in lettuce. The proportion of CLA metabolites was estimated to be greater than 70%, indicating that most of the CLA was metabolized in plant tissues. The proportion of SDZ metabolites was lower than 12% in the leaves and 10% in the roots. Some metabolites might have the ability to increase or acquire antibacterial activity. Therefore, in addition to the parent compounds, metabolites of antibiotics in edible vegetables are also worthy of study for risk assessment and to determine the consequences of long-term exposure.
显示更多 [+] 显示较少 [-]Decontamination of U(VI) on graphene oxide/Al2O3 composites investigated by XRD, FT-IR and XPS techniques
2019
Zhang, Lei | Li, Ying | Guo, Han | Zhang, Huihui | Zhang, Ning | Hayat, Tasawar | Sun, Yubing
The decontamination of U(VI) on graphene oxide/nano-alumina (GO/Al₂O₃) composites were investigated by batch, XRD, FT-IR and XPS techniques. The characterization results showed that GO/Al₂O₃ composites presented a variety of oxygen-containing functional groups, which provided the more surface reactive sites. The batch experiments indicated that sorption equilibrium of U(VI) on GO/Al₂O₃ composites was achieved within 30 min, and the maximum sorption capacity derived from Langmuir model was 142.8 mg/g at pH 6.5. In addition, the slight decrease of sorption capacity was observed even after fifth recycling times. These results indicated that GO/Al₂O₃ composites displayed the fast sorption rate, high sorption capacity and good regeneration performance. No effect of ionic strength revealed the inner-sphere surface complexation of U(VI) on GO/Al₂O₃ composites. FT-IR and XPS analysis demonstrated that the high adsorption of U(VI) on GO/Al₂O₃ was attributed to the various oxygen-bearing functional groups. In addition, the nano Al₂O₃ was transferred to amorphous AlO(OH) mineral phase by XRD pattern, which provided the additional reactive sorption sites. These observations indicated that GO-based composites can be regarded as a promising adsorbent for immobilization and pre-concentration of U(VI) from aqueous solutions in the environmental remediation.
显示更多 [+] 显示较少 [-]Variation of indoor minimum mortality temperature in different cities: Evidence of local adaptations
2019
Thai, Phong K. | Cândido, Christhina | Asumadu-Sakyi, Akwasi | Barnett, Adrian | Morawska, L. (Lidia)
Epidemiological studies on the impact of outdoor temperature to human health have demonstrated the capability of humans to adapt to local climate. However, there is limited information on the association between indoor temperature and human health, despite people spending most of their time indoors. The problem stems from the lack of sufficient indoor temperature measurement in the population. To overcome this obstacle, this paper presents an indirect epidemiological approach to evaluate the impact of high indoor temperature on mortality. The relationships between indoor-outdoor temperatures in different climate zones identified in the literature were combined with the outdoor temperature-mortality curves of the same locations to obtain the local indoor minimum mortality temperatures (iMMT), the temperature at which mortality is lowest, which by implication is the temperature at which the population is most comfortable on average. We show that the iMMT varies and has a weak linear relationship with the distance to the equator, which provides evidence of human adaptation to local indoor temperatures. These findings reinforce the adaptive comfort theory, which states that people can adapt to local indoor environment and establish their thermal comfort. Recognising the human adaptability to local climate will direct flexible and optimized policy to protect public health against extreme temperature events. This will also help reduce energy consumption for regulating indoor temperature without compromising the occupants’ health.
显示更多 [+] 显示较少 [-]Vulnerability of Indian wheat against rising temperature and aerosols
2019
Sonkar, Geetika | Mall, R.K. | Banerjee, Tirthankar | Singh, Nidhi | Kumar, T.V Lakshmi | Chand, Ramesh
Potential impacts of change in climate on Indian agriculture may be significantly adverse, if not disastrous. There are projections of potential loss in wheat yield due to the rise in daily minimum (Tmin) and maximum (Tmax) temperature, but only few researchers have considered the extent of such loss on a spatial scale. We therefore, systematically studied the effect of change in Tmax, Tmean (daily average temperature) and Tmin, solar radiation (Srad) and precipitation (RAIN) during wheat growing seasons (from 1986 to 2015) on wheat crop yield over five wheat growing zones across India, taking into account the effect modification by aerosol loading (in terms of aerosol optical depth, 2001–2015). We note that for the entire India, 1 °C rise in Tmean resulted a 7% decrease in wheat yield which varied disproportionately across the crop growing zones by a range of −9% (peninsular zone, PZ) to 4% (northern hills zone, NHZ). The effect of Tmean on wheat yield was identical to the marginal effect of Tmax and Tmin, while 1% increase in Srad enhance wheat yield by 4% for all India with small geographical variations (2–5%), except for the northern hill region (−4%). Rise in 1 °C Tmean exclusively during grain filling duration was noted positive for all the wheat growing regions (0–2%) except over central plain zone (−3%). When estimates of weather variables on wheat yield was combined with the estimated impact of aerosols on weather, the most significant impact was noted over the NHZ (−23%), which otherwise varied from −7% to −4%. Overall, the study brings out the conclusive evidence of negative impact of rising temperature on wheat yield across India, which we found spatially inconsistent and highly uncertain when integrated with the compounding effect of aerosols loading.
显示更多 [+] 显示较少 [-]Long-term exposure to greenspace and metabolic syndrome: A Whitehall II study
2019
de Keijzer, Carmen | Basagaña, Xavier | Tonne, Cathryn | Valentín, Antònia | Alonso, J. (Jordi) | Antó, Josep M. | Nieuwenhuijsen, Mark J. | Kivimäki, Mika | Singh-Manoux, Archana | Sunyer, Jordi | Dadvand, Payam
Metabolic syndrome is an important risk factor for non-communicable diseases, particularly type 2 diabetes, coronary heart disease, and stroke. Long-term exposure to greenspace could be protective of metabolic syndrome, but evidence for such an association is lacking. Accordingly, we investigated the association between long-term exposure to greenspace and risk of metabolic syndrome.The present longitudinal study was based on data from four clinical examinations between 1997 and 2013 in 6076 participants of the Whitehall II study, UK (aged 45–69 years at baseline). Long-term exposure to greenspace was assessed by satellite-based indices of greenspace including Normalized Difference Vegetation Index (NDVI) and Vegetation Continuous Field (VCF) averaged across buffers of 500 and 1000 m surrounding the participants’ residential location at each follow-up. The ascertainment of metabolic syndrome was based on the World Health Organization (WHO) definition. Hazard ratios for metabolic syndrome were estimated using Cox proportional hazards regression models, controlling for age, sex, ethnicity, lifestyle factors, and socioeconomic status.Higher residential surrounding greenspace was associated with lower risk of metabolic syndrome. An interquartile range increase in NDVI and VCF in the 500 m buffer was associated with 13% (95% confidence interval (CI): 1%, 23%) and 14% (95% CI: 5%, 22%) lower risk of metabolic syndrome, respectively. Greater exposure to greenspace was also associated with each individual component of metabolic syndrome, including a lower risk of high levels of fasting glucose, large waist circumference, high triglyceride levels, low HDL cholesterol, and hypertension. The association between residential surrounding greenspace and metabolic syndrome may have been mediated by physical activity and exposure to air pollution.The findings of the present study suggest that middle-aged and older adults living in greener neighbourhoods are at lower risk of metabolic syndrome than those living in neighbourhoods with less greenspace.
显示更多 [+] 显示较少 [-]Mitigation of N2O emissions from urine treated acidic soils by liming
2019
Shaaban, Muhammad | Hu, Ronggui | Wu, Yupeng | Younas, Aneela | Xu, Xiangyu | Sun, Zheng | Jiang, Yanbin | Lin, Shan
Nitrous oxide (N2O) is a devastating greenhouse gas mainly released from soils to the atmosphere. Pasture soils, particularly acidic in nature, are large contributors of atmospheric N2O through deposition of urine-N. Devising strategies for reducing N2O emissions in acidic soils are the utmost need of the time. Therefore, the present study was carried out to investigate the possible efficacy of dolomite application to reduce N2O emissions from urine treated acidic soil. Application of urine to soil enlarged the production of NH4+-N, NO3−-N, microbial biomass C (MBC) and dissolved organic C (DOC), resulting in higher N2O emissions as compared to the control (soil only). The highest N2O emission rate (1.35 μg N2O-N kg−1 h−1) and cumulative flux (408 μg N2O-N kg−1) occurred in urine only treated soil. Dolomite addition, especially higher application dose, greatly reduced N2O emissions through improved soil pH. The results suggest that increasing pH of acidic soils is a good applicable approach for reducing N2O emissions from urine-treated soils.
显示更多 [+] 显示较少 [-]Peroxymonosulfate catalyzed by rGO assisted CoFe2O4 catalyst for removing Hg0 from flue gas in heterogeneous system
2019
Zhao, Yi | Nie, Guoxin | Ma, Xiaoying | Xu, Peiyao | Zhao, Xiaochu
The cobalt ferrite-reduced oxidized graphene (CoFe2O4/rGO) catalyst was synthesized by hydrothermal method and characterized by Powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), Brunauere Emmette Teller (BET) and Hysteresis loop. For developing a new method of removing elemental mercury (Hg0) from flue gas, the effects of catalyst dosage, PMS concentration, solution pH and reaction temperature on the removal efficiency were investigated experimentally by using peroxymonosulfate (PMS) catalyzed by CoFe2O4/rGO at a self-made bubbling reactor. The average removal efficiency of Hg0 in a 30-min period reached 95.56%, when CoFe2O4/rGO dosage was 0.288 g/L, PMS concentration was 3.5 mmol/L, solution pH was 5.5 and reaction temperature was 55 °C. Meanwhile, based on the free radical quenching experiments, in which, ethyl alcohol and tert butyl alcohol were used as quenchers to prove indirectly the presence of •OH and SO4•−, the characterizations of catalysts and reaction products, and the existing results from other scholars. The reaction mechanism was proposed.
显示更多 [+] 显示较少 [-]Contaminants in bald eagles of the upper Midwestern U.S.: A framework for prioritizing future research based on in-vitro bioassays
2019
Elliott, Sarah M. | Route, William T. | DeCicco, Laura A. | VanderMeulen, David D. | Corsi, Steven R. | Blackwell, Brett R.
Several organic contaminants (OCs) have been detected in bald eagle (Haliaeetus leucocephalus) nestling (eaglet) plasma in the upper Midwestern United States. Despite frequent and relatively high concentrations of OCs in eaglets, little is understood about potential biological effects associated with exposure. We screened an existing database of OC concentrations in eaglet plasma collected from the Midwestern United States against bioactivity information from the ToxCast database. ToxCast bioactivity information consists of concentrations expected to elicit responses across a range of biological space (e.g. cellular, developmental, etc.) obtained from a series of high throughput assays. We calculated exposure—activity ratios (EAR) by calculating the ratio of plasma concentrations to concentrations available in ToxCast. Bioactivity data were not available for all detected OCs. Therefore, our analysis provides estimates of potential bioactivity for 19 of the detected OCs in eaglet plasma. Perfluorooctanesulfonic acid (PFOS) EAR values were consistently the highest among all study areas. Maximum EAR values were ≥1 for PFOS, perfluorononanoic acid, and bisphenol A in 99.7, 0.53 and 0.26% of samples, indicating that some plasma concentrations were greater than what may be expected to elicit biological responses. About 125 gene targets, indicative of specific biological pathways, were identified as potentially being affected. Inhibition of several CYP genes, involved in xenobiotic metabolism, were most consistently identified. Other identified biological responses have potential implications for motor coordination, cardiac functions, behavior, and blood circulation. However, it is unclear what these results mean for bald eagles, given that ToxCast data are generated using mammalian-based endpoints. Despite uncertainties and limitations, this method of screening environmental data can be useful for informing future monitoring or research focused on understanding the occurrence and effects of OCs in bald eagles and other similarly-positioned trophic species.
显示更多 [+] 显示较少 [-]Effects of natural dissolved organic matter on the complexation and biodegradation of 17α-ethinylestradiol in freshwater lakes
2019
Bai, Leilei | Zhang, Qi | Wang, Changhui | Yao, Xiaolong | Zhang, Hui | Jiang, Helong
Natural dissolved organic matter (DOM) produced in algal blooms and overgrowths of macrophyte changes the elimination and ecotoxicity of estrogens in freshwater lakes. The complexation of 17α-ethinylestradiol (EE2) and various DOMs, including the water- and sediment-derived DOMs from the algal-dominant zone in Lake Taihu (TW and TS, respectively) and the macrophyte-dominant zone in Poyang Lake (PW and PS, respectively), and the humic acid (HA), was investigated along with the subsequent effects on EE2 biodegradation. Dialysis equilibrium experiments showed that binding to DOM significantly decreased the freely soluble concentrations of EE2. The binding capacity of the five DOMs followed the order of PW < TW < PS ≈ TS < HA. A negative correlation was found between the organic-carbon-normalized sorption coefficient (logKDOC) and the absorption ratio (E₂/E₃) of DOM, indicating that the large sized, aromatic molecules were involved in the complexation. The reduced freely soluble concentrations of EE2 did not inhibit its biodegradation by an EE2-degrading strain, Rhodobacter blasticus. Conversely, the autochthonous-dominated water-derived DOMs stimulated a more extensive biodegradation of EE2 than the sediment-derived DOMs, and the existence of HA resulted in the smallest increase in EE2 biodegradation. The promoting effect was associated with the increased concentration, activity, and transforming rate of R. blasticus by the bioavailable components in DOM. The present study suggests that the significant impact of natural DOM should be fully considered when assessing the fate and ecological risks of estrogens in eutrophic waters.
显示更多 [+] 显示较少 [-]Characterization of interactions between a metabolic uncoupler O-chlorophenol and extracellular polymeric substances of activated sludge
2019
Fang, Fang | Xu, Run-Ze | Wang, Su-Na | Zhang, Lu-Lu | Huang, Yan-Qiu | Luo, Jing-Yang | Feng, Qian | Cao, Jia-Shun
Metabolic uncouplers are widely used for the in-situ reduction of excess sludge from activated sludge systems. However, the interaction mechanism between the metabolic uncouplers and extracellular polymeric substances (EPS) of activated sludge is unknown yet. In this study, the interactions between a typical metabolic uncoupler, o-chlorophenol (oCP), and the EPS extracted from activated sludge were explored using a suite of spectral methods. The binding constants calculated for the four peaks of three-dimensional excitation-emission matrix fluorescence were in a range of 1.24–1.76 × 10³ L/mol, implying that the tyrosine protein-like substances governed the oCP-EPS interactions. Furthermore, the results of Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and ¹H nuclear magnetic resonance indicated that the carboxyl, carbonyl, amine, and hydroxyl groups of EPS were the main functional groups involved in the formation of the oCP-EPS complex. The results of this study are useful for understanding the interactions between metabolic uncouplers and the EPS of activated sludge as well as their fates in biological wastewater treatment systems.
显示更多 [+] 显示较少 [-]