细化搜索
结果 3011-3020 的 4,924
Duration analysis on the adoption behavior of green control techniques
2019
Gao, Yang | Zhao, Duanyang | Yu, Lili | Yang, Haoran
Based on field survey data of 366 traditional households (THs) and 364 family farms (FFs) from Huang-Huai-Hai Plain, a discrete-time cloglog model for parameter estimation was constructed to reveal factors that affect the two types of farms’ duration from the awareness to the adoption of green control techniques (GCTs). Differences in the influencing factors affecting the duration of the two types of farmers were also discussed. The research results are as follows. First, the duration from awareness to adoption of GCTs is significantly shorter in FFs than that in THs. Second, a higher degree of education, risk preference, family financial status, perceived ease of use and usefulness of the technique, and extension of media and supervision of agricultural technique extension departments of local governments significantly reduce the duration from awareness to adoption of GCTs by THs and FFs, whereas a male head of household prolongs the duration. Third, the age, farm size, and number of laborers exert different impacts on the duration from awareness to adoption of GCTs by THs and FFs.
显示更多 [+] 显示较少 [-]Highly dispersed core-shell iron nanoparticles decorating onto graphene nanosheets for superior Zn(II) wastewater treatment
2019
Yao, Yihao | Huang, Shiming | Zhou, Wen | Liu, Airong | Zhao, Weijia | Song, Chenyu | Liu, Jing | Zhang, Weixian
This study reports the preparation of highly dispersed nanoscale zerovalent iron (nZVI) with core-shell structure decorated onto graphene nanosheets (Gr-NS) to form nZVI-Gr-NS composite. Meanwhile, its excellent performance for concentrated Zn(II) wastewater treatment is also studied. The adsorption of Zn(II) onto nZVI-Gr-NS is well simulated by the pseudo-second-order model, which indicates the adsorption is the rate-controlling step. Moreover, the adsorption isotherms of Zn(II) on the nZVI-Gr-NS can fit well with the Langmuir model. The negative thermodynamic parameters (△GƟ, △HƟ, △SƟ) calculated from the temperature-dependent isotherms indicate that the sorption reaction of Zn(II) is an exothermic and spontaneous process. The high saturation magnetization (37.4 emu g⁻¹) of the nZVI-Gr-NS makes separation of nZVI-Gr-NS-bound Zn(II) easily and quickly from aqueous solution. Most importantly, nZVI-Gr-NS composites not only remove Zn(II) but also spontaneously remove As, Se, and Cu ions from real smelting wastewater samples. This study provides a good solution for heavy metal removal in real wastewater.
显示更多 [+] 显示较少 [-]Vertical distribution of fluorine in farmland soil profiles around phosphorous chemical industry factories
2019
Wang, Mei | Yang, Jin-yan | He, Wen-yan | Li, Jin-xin | Zhu, Yan-yuan | Yang, Xiao-e
High concentration of fluorine (F) in agricultural soils has got significant attention considering its impacts on human health, but little information was available about F distribution in farmland soil profiles around phosphorous chemical industry factories. In present study, farmland soil profiles and relevant medium samples were collected from farmlands around a main phosphorous chemical base in southwest China. At 0–100-cm profiles, concentrations of soil total F (Ft, 400.9–1612.0 mg kg⁻¹) and water soluble F (Fw, 3.4–26.0 mg kg⁻¹) decreased with profile depth in industrial areas. Industrial activities enhanced F concentration in soil mainly at 0–40-cm profiles. No disparity for both Ft and Fw distributions in paddy-dry land rotation field and dry land indicates short-term land utilization could not affect the F distribution in soil profiles. Correlation analysis showed soil organic matter and wind direction were important factors influencing the distribution of F in soil profiles. The shutdown of factory and government control of industrial emissions effectively decreased the ambient air F (Fa) concentrations in industrial areas. In where Fa and dustfall F concentrations were high, high soil Ft, Fw, and crop edible part F concentrations were found.
显示更多 [+] 显示较少 [-]Contrastive removal of oxytetracycline and chlortetracycline from aqueous solution on Al-MOF/GO granules
2019
Yu, Lin-ling | Luo, Zi-fen | Zhang, Ying Ying | Wu, Shi-chuan | Yang, Cao | Cheng, Jian-hua
The presence of tetracycline antibiotics (TCS) in the water and wastewater has raised growing concern due to its potential environmental impacts; thus, their removal is of high importance. In this study, a novel aluminum-based MOF/graphite oxide (Al-MOF/GO) granule was prepared as an adsorbent for the removal of TCS including oxytetracycline (OTC) and chlortetracycline (CTC). The adsorbent was characterized via XRD, FTIR, BET, SEM, and XPS methods. The granules exhibited similar crystal structure and some new mesopores appearing compared to the parent Al-MOF/GO powder. In addition, the adsorption behavior of OTC and CTC on samples was explored as a function of initial concentration, contact time, pH, and ionic strength by means of batch experiments. The adsorption capacity reached to 224.60 and 240.13 mg·L⁻¹ for OTC and CTC, at C₀ = 60 mg·L⁻¹ as well as ambient temperature respectively. Moreover, the adsorption process of OTC and CTC on Al-MOF/GO samples can be better delineated by pseudo-second-order kinetics and Freundlich isotherm models. Besides, the adsorption mechanism over Al-MOF/GO granules was proposed, which could be ascribed to π-π interaction, cation-π bonding, and hydrogen bond. Finally, the great water stability, separation performance, and regeneration efficiency of these novel granules indicated their potential application in the OTC and CTC removals from aqueous solution.
显示更多 [+] 显示较少 [-]Removal of aqueous fluoroquinolones with multi-functional activated carbon (MFAC) derived from recycled long-root Eichhornia crassipes: batch and column studies
2019
Liu, Lili | Chen, Xin | Wang, Zhiping | Lin, Sen
Fluoroquinolones (FQs) occur broadly in natural media due to its extensive use, and it has systematic effects on our ecosystem and human immunity. In this study, long-root Eichhornia crassipes was reclaimed as a multi-functional activated carbon (MFAC) to remove fluoroquinolones (FQs) from contaminated water. To get insight into the adsorption mechanism, multiple measurements, including FTIR and XPS analyses, were employed to investigate the adsorption processes of ciprofloxacin and norfloxacin as well as the experiments of effect of exogenous factors on adsorption performances. The results confirmed that the adsorption of FQs by MFAC was mainly attributed to the electrostatic interaction, hydrogen bond interaction, and electronic-donor-acceptor (EDA) interaction. In addition, the kinetics and thermodynamics experiments demonstrated that the MFAC possessed great adsorption performance for FQs. According to the Langmuir model, the saturated adsorption capacities exceeded 145.0 mg/g and 135.1 mg/g for CIP and NOR at 303.15 K, respectively. The column experiments were conducted to explore the application performance of MFAC on the advanced treatment of synthetic water at different flow rates and bed depths. The adsorption capacity of CIP on MFAC was estimated by the Thomas models and the bed-depth service time (BDST) models, reaching 127.56 mg/g and 11,999.52 mg/L, respectively. These results also provide a valid approach for the resource recycling of the redundant long-root Eichhornia crassipes plants. Graphical abstract
显示更多 [+] 显示较少 [-]Tolerance of native and invasive bivalves under herbicide and metal contamination: an ex vivo approach
2019
El Haj, Yasmin | Bohn, Sofia | Souza, Marta Marques
The literature indicates that exotic species have a greater tolerance to environmental stressors compared with native species. In recent decades, the introduction of contaminants into the environment has increased as a result of industrialization. The objective of this study was to verify the resistance of bivalve mollusks from freshwater native (Anodontites trapesialis) and exotic (Limnoperna fortunei) species to chemical contamination using an ex vivo/in vitro approach. Gill and muscle tissues were exposed to two different types of environmental stressors, copper (metal), and Roundup Transorb® (herbicide). The tissues were submitted to a cytotoxicity test in which the lysosomal integrity was assessed, from the adaptation of a method to isolated cells, and multixenobiotic resistance (MXR) test which evaluated cellular defense. In the exotic species, only copper at 9000 μg/L and Roundup Transorb® at 5000 μg/L were cytotoxic. In the native species, copper cytotoxicity at 900 and 9000 μg/L and Roundup Transorb® at 50 and 5000 μg/L were observed. Results were the same in both tissues. The MXR, responsible for the extrusion of contaminants (cell defense), was inhibited in both species when exposed to the contaminants, this cell defense system seems to be more inhibited in the native species, when exposed to both pollutants, indicating greater sensitivity. Therefore, cytotoxicity may be related to the lack of capacity of cellular defense. In relation to lysosomal integrity, the native species was more sensitive to cytotoxic pollutants, where a greater number of experimental conditions of metals and herbicide showed cytotoxicity, as well as more experimental situations inhibited its ability to defend itself.
显示更多 [+] 显示较少 [-]A combined chemical and phytoremediation method for reclamation of acid mine drainage–impacted soils
2019
RoyChowdhury, Abhishek | Sarkar, Dibyendu | Datta, Rupali
Production of acid mine drainage (AMD) and acid sulfate soils is one of the most concerning environmental consequences associated with mining activities. Implementation of appropriate post-mining AMD management practices is very important to minimize environmental impacts such as high soil acidity, soil erosion, and metal leachability. The objective of this study was to develop a cost-effective and environment-friendly “green” technology for the treatment of AMD-impacted soils. This study utilized the metal-binding and acid-neutralizing capacity of an industrial by-product, namely drinking water treatment residuals (WTRs), and the extensive root system of a metal hyper-accumulating, fast-growing, non-invasive, high-biomass perennial grass, vetiver (Chrysopogon zizanioides L.) to prevent soil erosion. Aluminum (Al)-based and calcium (Ca)-based WTRs were used to treat AMD-impacted soil collected from the Tab-Simco coal mine in Carbondale, IL. Tab-Simco is an abandoned coal mine, with very acidic soil containing a number of metals and metalloids such as Fe, Ni, Zn, Pb, and As at high concentrations. A 4-month-long greenhouse column study was performed using 5% and 10% w/w WTR application rates. Vetiver grass was grown on the soil-WTR mixed media. Turbidity and total suspended solid (TSS) analysis of leachates showed that soil erosion decreased in the soil-WTR-vetiver treatments. Difference in pH of leachate samples collected from control (3.06) and treatment (6.71) columns at day 120 indicated acidity removal potential of this technology. A scaled-up simulated field study was performed using 5% WTR application rate and vetiver. Soil pH increased from 2.69 to 7.2, and soil erosion indicators such as turbidity (99%) and TSS (95%) in leachates were significantly reduced. Results from the study showed that this “green” reclamation technique has the potential to effectively treat AMD-impacted soils.
显示更多 [+] 显示较少 [-]Effects of cerium oxide nanoparticles on bacterial growth and behaviors: induction of biofilm formation and stress response
2019
Xu, Yi | Wang, Chao | Hou, Jun | Wang, Peifang | You, Guoxiang | Miao, Lingzhan
In this paper, the effects of cerium oxide nanoparticles (CeO₂ NPs) on the group bacterial behaviors were elaborated. After 36-h cultivation, the biofilm biomass was enhanced by the sub-lethal concentrations of 0.5 and 2 mg/L CeO₂ NP exposure. Meanwhile, the promoted production of total amino acids in microbes further resulted in the increased surface hydrophobicity and percentage aggregation. To resist the CeO₂ NPs stress, the biofilm exhibited a double-layer microstructure, with the protein (PRO) and living cells occupying the bottom, the polysaccharide (PS), and dead cells dominating the top. The bacterial diversity was highly suppressed and Citrobacter and Pseudomonas from the phylum of γ-Proteobacteria strongly dominated the biofilm, indicating the selective and enriched effects of CeO₂ NPs on resistant bacteria. The stimulated inherent resistance of biofilm was reflected by the reduced adenosine triphosphate (ATP) content after 4 h exposure. The increased levels of reactive oxygen species (ROS) in the treatments of 8 h CeO₂ NP exposure led to the upregulated quorum sensing signals of acylated homoserine lactone (AHL) and autoinducer 2 (AI-2), beneficial to mitigating the environmental disturbance of CeO₂ NPs. These results provide evidences for the accelerating effects of CeO₂ NPs on biofilm formation through oxidative stress, which expand the understanding of the ecological effects of CeO₂ NPs.
显示更多 [+] 显示较少 [-]Stability and uptake of methylphenidate and ritalinic acid in nine-spine stickleback (Pungitius pungitius) and water louse (Asellus aquaticus)
2019
McCallum, Erin S. | Lindberg, Richard H. | Andersson, Patrik L. | Brodin, Tomas
The presence of human pharmaceuticals in the environment has garnered significant research attention because these compounds may exert therapeutic effects on exposed wildlife. Yet, for many compounds, there is still little research documenting their stability in the water column and uptake in organism tissues. Here, we measured the uptake and stability of methylphenidate (Ritalin®, a frequently prescribed central nervous system stimulant) and its primary metabolite, ritalinic acid, in (1) water only or (2) with nine-spine stickleback and water louse. Methylphenidate degraded to ritalinic acid in both studies faster at a higher temperature (20 °C versus 10 °C), with concentrations of ritalinic acid surpassing methylphenidate after 48–100 h, depending on temperature. The concentration of methylphenidate in stickleback was highest at the first sampling point (60 min), while the concentration in water louse tissues reached comparatively higher levels and peaked after ~ 6 days. Neither stickleback nor water louse took up ritalinic acid in tissues despite being present in the water column. Our findings provide valuable data for use in future risk assessment of methylphenidate and will aid in the design of studies aimed at measuring any ecotoxicological effects on, for example, the behaviour or physiology of aquatic organisms.
显示更多 [+] 显示较少 [-]A comprehensive evaluation of the association between ambient air pollution and adverse health outcomes of major organ systems: a systematic review with a worldwide approach
2019
Bazyar, Jafar | Pourvakhshoori, Negar | Khankeh, Hamidreza | Farrokhi, Mehrdad | Delshad, Vahid | Rajabi, Elham
Ambient air pollution is nowadays one of the most crucial contributors to deteriorating health status worldwide. The components of air pollution include PM₂.₅ and PM₁₀, NO₂, SO₂, CO, O₃, and organic compounds. They are attributed to several health outcomes, for instance, cardiovascular diseases (CVD), respiratory diseases, birth outcomes, neurologic diseases, and psychiatric diseases. The objective of this study is to evaluate the association between different ambient air pollutants and the above-mentioned health outcomes. In this systematic review, a total of 76 articles was ultimately selected from 2653 articles, through multiple screening steps by the aid of a set of exclusion criteria as non-English articles, indoor air pollution assessment, work-related, occupational and home-attributed pollution, animal studies, tobacco smoking effects, letters to editors, commentaries, animal experiments, reviews, case reports and case series, out of 19,862 published articles through a systematic search in PubMed, Web of Science, and Scopus. Then, the associations between air pollution and different health outcomes were measured as relative risks and odds ratios. The association between air pollutants, PM₂.₅ and PM₁₀, NO₂, SO₂, CO, O₃, and VOC with major organ systems health was investigated through the gathered studies. Relative risks and/or odds ratios attributed to each air pollutant/outcome were ultimately reported. In this study, a thorough and comprehensive discussion of all aspects of the contribution of ambient air pollutants in health outcomes was proposed. To our knowledge up to now, there is no such comprehensive outlook on this issue. Growing concerns in concert with air pollution-induced health risks impose a great danger on the life of billions of people worldwide. Should we propose ideas and schemes to reduce ambient air pollutant, there will be dramatic reductions in the prevalence and occurrence of health-threatening conditions.
显示更多 [+] 显示较少 [-]