细化搜索
结果 311-320 的 6,546
Mapping polychlorinated dibenzo-p-dioxins/dibenzofurans in soils around Pugu municipal dump site in Dar es Salaam, Tanzania: Implications on dermal and soil ingestion exposure for people in the peripheral 全文
2020
Pius, Christina | Koosaletse-Mswela, Pulane | Sichilongo, Kwenga | Dikinya, Oagile
Experimental data on the contribution of a dump site in Tanzania as a point source of the 17 possible congeners of PCDD/Fs to the environment is presented. Dry and wet season samples were collected around Pugu municipal dump site followed by GCxGC-TOFMS analysis. The dominant congeners were OctaCDD, 1,2,3,4,6,7,8-HepCDF; 1,2,3,4,6,7,8-HeptaCDD and 1,2,4,7-PeCDD. The concentrations of the congeners expressed as TEQ WHO₂₀₀₅ ranged from 11.69 to 48.97 pg/g with a mean of 29.44 pg/g for the dry season and TEQ WHO₂₀₀₅ 4.13–85.82 pg/g with a mean of 41.51 pg/g for the wet season. These levels were speculated high enough to accumulate in free-range chickens and cause harmful effects to humans that consumed them especially residents around Pugu dump site. Exposure of people to PCDD/Fs through dermal absorption and soil ingestion were estimated using the VLIER-HUMAAN Mathematical model. Exposure through dermal absorption was estimated to be 1.2 × 10⁻⁴ and 9.8 × 10⁻⁶ ng TEQ/kg day for children and adults respectively while through soil ingestion via consumption of contaminated foods and other sources was 0.0045 and 0.27 ng TEQ/kg day for children and adults respectively. These values however were well below the WHO tolerable daily intake. Generally, there was no significant variation for total PCDD/Fs in the dry and wet season (α = 0.08). Strong positive correlation (r = 0.94) between total PCDD/Fs and organic matter content was observed during the wet season.
显示更多 [+] 显示较少 [-]Synthesis of nano-magnetic MnFe2O4 to remove Cr(III) and Cr(VI) from aqueous solution: A comprehensive study 全文
2020
Eyvazi, Behzad | Jamshidi-Zanjani, Ahmad | Darban, Ahmad Khodadadi
The co-precipitation method was used to synthesize nano-magnetic adsorbent MnFe₂O₄ (nMFO), characterized through XRD, SEM, EDS, and BET techniques. The synthesized nMFO was used for hexavalent and trivalent chromium ions elimination from the aqueous phase. The optimum pH for the adsorption of Cr (VI) and Cr (III) was determined as 2 and 5, respectively. The chromium ions adsorption behavior was well interpreted through the pseudo-second order kinetics model. Furthermore, isotherm studies were conducted, and the obtained results indicated that Langmuir isotherm model could well justify the chromium ions adsorption process. Quick removal (less than 10 min) of both chromium ions and high removal efficiency were occurred using nMFO. The utmost adsorption capacity of trivalent and hexavalent chromium ions were determined as 39.6 and 34.84 mg g⁻¹, respectively. Thermodynamic studies on chromium adsorption revealed positive value for ΔH and negative value for ΔG, representing that chromium ions adsorption was an endothermic and spontaneous process. The multilinearity in the graphs of chromium ions adsorption was observed using intra-particle diffusion model. In this regard, the external mass transfer of chromium ions on synthesized nanoparticles was the important and controlling step in the adsorption process.
显示更多 [+] 显示较少 [-]Cadmium distribution in mature durum wheat grains using dissection, laser ablation-ICP-MS and synchrotron techniques 全文
2020
Yan, Bofang | Isaure, Marie-Pierre | Mounicou, Sandra | Castillo-Michel, Hiram | De Nolf, Wout | Nguyen, Christophe | Cornu, Jean-Yves
Cadmium distribution in mature durum wheat grains using dissection, laser ablation-ICP-MS and synchrotron techniques 全文
2020
Yan, Bofang | Isaure, Marie-Pierre | Mounicou, Sandra | Castillo-Michel, Hiram | De Nolf, Wout | Nguyen, Christophe | Cornu, Jean-Yves
Understanding how essential and toxic elements are distributed in cereal grains is a key to improving the nutritional quality of cereal-based products. The main objective of this work was to characterize the distribution of Cd and of nutrients (notably Cu, Fe, Mn, P, S and Zn) in the durum wheat grain. Laser ablation inductively coupled mass spectrometry and synchrotron micro X-ray fluorescence were used for micro-scale mapping of Cd and nutrients. A dissection approach was used to quantitatively assess the distribution of Cd and nutrients among grain tissues. Micro X-ray absorption near-edge spectroscopy was used to identify the Cd chemical environment in the crease. Cadmium distribution was characterized by strong accumulation in the crease and by non-negligible dissemination in the endosperm. Inside the crease, Cd accumulated most in the pigment strand where it was mainly associated with sulfur ligands. High-resolution maps highlighted very specific accumulation areas of some nutrients in the germ, for instance Mo in the root cortex primordia and Cu in the scutellum. Cadmium loading into the grain appears to be highly restricted. In the grain, Cd co-localized with several nutrients, notably Mn and Zn, which challenges the idea of selectively removing Cd-enriched fractions by dedicated milling process.
显示更多 [+] 显示较少 [-]Cadmium distribution in mature durum wheat grains using dissection, laser ablation-ICP-MS and synchrotron techniques * 全文
2020
Yan, Bofang | Isaure, M.-P. | Mounicou, Sandra | Castillo-Michel, Hiram | de Nolf, Wout | Nguyen, Christophe | Cornu, Jean-Yves | Interactions Sol Plante Atmosphère (UMR ISPA) ; Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM) ; Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | European Synchrotron Radiation Facility (ESRF) | CADMIGRAIN project | AQUITRACE project | ANR-15-CE21-0001,CaDON,Cadmium et Deoxynivalenol dans les récoltes de blé dur: comprendre les évènements de contamination croisée et évaluer la toxicité du mélange.(2015)
International audience | Understanding how essential and toxic elements are distributed in cereal grains is a key to improving the nutritional quality of cereal-based products. The main objective of this work was to characterize the distribution of Cd and of nutrients (notably Cu, Fe, Mn, P, S and Zn) in the durum wheat grain. Laser ablation inductively coupled mass spectrometry and synchrotron micro X-ray fluorescence were used for micro-scale mapping of Cd and nutrients. A dissection approach was used to quantitatively assess the distribution of Cd and nutrients among grain tissues. Micro X-ray absorption near-edge spectroscopy was used to identify the Cd chemical environment in the crease. Cadmium distribution was characterized by strong accumulation in the crease and by non-negligible dissemination in the endosperm. Inside the crease, Cd accumulated most in the pigment strand where it was mainly associated with sulfur ligands. High-resolution maps highlighted very specific accumulation areas of some nutrients in the germ, for instance Mo in the root cortex primordia and Cu in the scutellum. Cadmium loading into the grain appears to be highly restricted. In the grain, Cd co-localized with several nutrients, notably Mn and Zn, which challenges the idea of selectively removing Cd-enriched fractions by dedicated milling process.
显示更多 [+] 显示较少 [-]Advances and challenges of microplastic pollution in freshwater ecosystems: A UK perspective 全文
2020
Meng, Yuchuan | Kelly, Frank J. | Wright, Stephanie L.
Microplastics have been increasingly documented in freshwater ecosystems in recent years, and growing concerns have been raised about their potential environmental health risks. To assess the current state of knowledge, with a focus on the UK, a literature review of existing freshwater microplastics studies was conducted. Sampling and analytical methodologies currently used to detect, characterise and quantify microplastics were assessed and microplastic types, sources, occurrence, transport and fate, and microplastic-biota interactions in the UK’s freshwater environments were examined. Just 32% of published microplastics studies in the UK have focused on freshwater environments. These papers cover microplastic contamination of sediments, water and biota via a range of methods, rendering comparisons difficult. However, secondary microplastics are the most common type, and there are point (e.g. effluent) and diffuse (non-point, e.g. sludge) sources. Microplastic transport over a range of spatial scales and with different residence times will be influenced by particle characteristics, external forces (e.g. flow regimes), physical site characteristics (e.g. bottom topography), the degree of biofouling, and anthropogenic activity (e.g. dam release), however, there is a lack of data on this. It is predicted that impacts on biota will mirror that of the marine environment. There are many important gaps in current knowledge; field data on the transport of microplastics from diffuse sources are less available, especially in England. We provide recommendations for future research to further our understanding of microplastics in the environment and their impacts on freshwater biota in the UK.
显示更多 [+] 显示较少 [-]Predicting the rate constants of semivolatile organic compounds with hydroxyl radicals and ozone in indoor air 全文
2020
Wei, Wenjuan | Sivanantham, Sutharsini | Malingre, Laeticia | Ramalho, Olivier | Mandin, Corinne
Semivolatile organic compounds (SVOCs) in air can react with hydroxyl radicals (OH), nitrate radicals (NO₃) and ozone (O₃). Two questions regarding SVOC reactivity with OH, NO₃ and O₃ in the gas and particle phases remain to be addressed: according to the existing measurements in the literature, which are the most reactive SVOCs in air, and how can the SVOC reactivity in the gas and particle phases be predicted? In the present study, a literature review of the second-order rate constant (k) was carried out to determine the SVOC reactivity with OH, NO₃ and O₃ in the gas and particle phases in ambient and indoor air at room temperature. Measured k values were available in the literature for 90 polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organophosphates, dioxins, di(2-ethylhexyl)phthalate (DEHP) and pesticides including pyrifenox, carbamates and terbuthylazine. PAHs and organophosphates were found to be more reactive than dioxins and PCBs. Based on the obtained data, quantitative structure-activity relationship (QSAR) models were developed to predict the k value using quantum chemical, molecular, physical property and environmental descriptors. Eight linear and nonlinear statistical models were employed, including regression models, bagging, random forest and gradient boosting. QSAR models were developed for SVOC/OH reactions in the gas and particle phases and SVOC/O₃ reactions in the particle phase. Models for SVOC/NO₃ and SVOC/O₃ reactions in the gas phase could not be developed due to the lack of measured k values for model training. The least absolute shrinkage and selection operator (LASSO) regression and random forest models were identified as the most effective models for SVOC reactivity prediction according to a comparison of model performance metrics.
显示更多 [+] 显示较少 [-]Synergistic effect of fenpropathrin and paclobutrazol on early life stages of zebrafish (Danio rerio) 全文
2020
Wang, Yanhua | Yang, Guiling | Shen, Weifeng | Xu, Chao | Di, Shanshan | Wang, Dou | Li, Xinfang | Wang, Xinquan | Wang, Qiang
Aquatic organisms are usually exposed to various co-existing pollutants. However, toxic effects of pesticide mixtures on aquatic organisms and its potential underlying mechanism still remain unclear. The joint effects of fenpropathrin (FEN) and paclobutrazol (PAC) on zebrafish (Danio rerio) using diverse toxicological endpoints were investigated in the current work. Our data exhibited that the 96-h LC₅₀ values of FEN to zebrafish at multiple life phases ranged from 0.0029 (0.0013–0.0042) to 0.16 (0.082–0.23) mg a.i. L⁻¹, which were lower by comparison to PAC ranging from 13.16 (8.564–21.03) to 23.43 (17.94–29.91) mg a.i. L⁻¹. Combination of FEN and PAC displayed synergistic effect on embryonic zebrafish. Activities of T-SOD, Cu/Zn-SOD and CYP450 were remarkably changed in the majority of single and mixture treatments by comparison to the untreated group. The mRNA levels of 17 genes related to oxidative stress, cellular apoptosis, immune system and endocrine system were assessed, and the data suggested that embryonic zebrafish were affected by both single pesticides and their mixtures. Five genes (P53, tsh, ERα, crh and cxcl-clc) showed greater alterations when exposed to pesticide mixtures by comparison to their individual chemicals. Therefore, it is urgently necessary to conduct more studies on mixture toxicities of different pesticides to explore the chemical mixtures with synergistic interactions.
显示更多 [+] 显示较少 [-]Contrasting effects of Cr(III) and Cr(VI) on lettuce grown in hydroponics and soil: Chromium and manganese speciation 全文
2020
Park, Jin Hee
Chromium (Cr) is a toxic element among which hexavalent chromium [Cr(VI)] is more toxic than trivalent chromium [Cr(III)]. Chromium can be reduced or oxidized in soil because soil is a complex medium and various soil components affect redox reaction of Cr in soil. Therefore, Cr speciation in hydroponics and soil was compared and Cr uptake and speciation by lettuce grown in the media were evaluated. Higher phytotoxicity was found in Cr(III) spiked soil than in Cr(VI) spiked soil, while Cr toxicity was higher in Cr(VI) treated hydroponics than Cr(III) treated hydroponics. Chromium was mainly accumulated in lettuce roots as Cr(III), and more Cr was translocated from roots to shoots grown in Cr(VI) treated hydroponics than Cr(III) treated hydroponics. Accumulation of Cr in roots grown in Cr(III) treated nutrient solution reduced Fe, K, Ca, Mg, and P uptake in lettuce. Chromium valence state was Cr(III) in lettuce leaves and roots grown in both Cr(III) and Cr(VI) treated hydroponics and soil. Chromium speciation in hydroponically grown lettuce roots was Cr(III) coordinated with 6 oxygens in the first shell and 2 or 4 carbons in the second shell as analyzed by X-ray absorption spectroscopy (XAS), which was similar to chromium acetate. The valence state of Cr in Cr(III) and Cr(VI) treated nutrient solution was not changed, while Cr(VI) was reduced to Cr(III) in Cr(VI) spiked soil by soil organic matter. Spiking of Cr(III) induced reduction of Mn in soil, which resulted in an increase of bioavailable Mn concentration in the Cr(III) spiked soil. Therefore, the increased phytotoxic effect for lettuce in Cr(III) spiked soil can be attributed to the reduction of Mn and subsequent release of Mn(II). For Cr(III) contaminated soil, Mn speciation should be considered, and bioavailable Mn concentration should be monitored although Cr existed as Cr(III) in soil.
显示更多 [+] 显示较少 [-]Ambient air pollution exposed during preantral-antral follicle transition stage was sensitive to associate with clinical pregnancy for women receiving IVF 全文
2020
Li, Lipeng | Zhou, Lixiao | Feng, Tengfei | Hao, Guimin | Yang, Sujuan | Wang, Ning | Yan, Lina | Pang, Yaxian | Niu, Yujie | Zhang, Rong
Maternal exposure to air pollution is associated with poor reproductive outcomes in in vitro fertilization (IVF). However, the susceptible time windows are still not been known clearly. In the present study, we linked the air pollution data with the information of 9001 women receiving 10,467 transfer cycles from August 2014 to August 2019 in The Second Hospital of Hebei Medical University, Shijiazhuang City, China. Maternal exposure was presented as individual average daily concentrations of PM₂.₅, PM₁₀, NO₂, SO₂, CO, and O₃, which were predicted by spatiotemporal kriging model based on residential addresses. Exposure windows were divided to five periods according to the process of follicular and embryonic development in IVF. Generalized estimating equation model was used to evaluate adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for association between clinical pregnancy and interquartile range increased average daily concentrations of pollutants during each exposure period. The increased PM₂.₅ (adjusted OR = 0.95, 95% CI: 0.90, 0.99), PM₁₀ (adjusted OR = 0.93, 95% CI: 0.89, 0.98), NO₂ (adjusted OR = 0.89, 95% CI: 0.85, 0.94), SO₂ (OR = 0.94, 95% CI: 0.90, 0.98), CO (adjusted OR = 0.93, 95% CI: 0.89, 0.97) whereas decreased O₃ (OR = 1.08, 95% CI: 1.02, 1.14) during the duration from preantral follicles to antral follicles were the strongest association with decreased probability of clinical pregnancy among the five periods. Especially, women aged 20–29 years old were more susceptible in preantral-antral follicle transition stage. Women aged 36–47 years old were more vulnerable during post-oocyte retrieve period. Our results suggested air pollution exposure during preantral-antral follicle transition stage was a note-worthy challenge to conceive among females receiving IVF.
显示更多 [+] 显示较少 [-]Foraminifera as bioindicators of water quality: The FoRAM Index revisited 全文
2020
Prazeres, Martina | Martínez-Colón, Michael | Muller, Pamela Hallock
Coral reefs worldwide are degrading at alarming rates due to local and global stressors. There are ongoing needs for bioindicator systems that can be used to assess reef health status, the potential for recovery following destructive events such as tropical storms, and for the success of coral transplants. Benthic foraminiferal shells are ubiquitous components of carbonate sediment in reef environments that can be sampled at minimal cost and environmental impact. Here we review the development and application of the FoRAM Index (FI), which provides a bioindicator metric for water quality that supports reef accretion. We outline the strengths and limitations of the FI, and propose how it can be applied more effectively across different geographical regions.
显示更多 [+] 显示较少 [-]Thallium(I) sequestration by jarosite and birnessite: Structural incorporation vs surface adsorption 全文
2020
Aguilar-Carrillo, J. | Herrera-García, L. | Reyes-Domínguez, Iván A. | Gutiérrez, Emmanuel J.
Jarosite and birnessite secondary minerals play a pivotal role in the mobility, transport and fate of trace elements in the environment, although geochemical interactions of these compounds with extremely toxic thallium (Tl) remain poorly known. In this study, we investigated the sorption behavior of Tl(I) onto synthetic jarosite and birnessite, two minerals commonly found in soils and sediments as well as in mining-impacted areas where harsh conditions are involved. To achieve this, sorption and desorption experiments were carried out under two different acidic conditions and various Tl(I) concentrations to mimic natural scenarios. In addition, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and inductively coupled plasma (ICP) analyses were conducted to determine the performance of both minerals for Tl(I) sequestration. Our results indicate that both phases can effectively remove aqueous Tl by different sorption mechanisms. Jarosite preferentially incorporates Tl(I) into the structure to form Tl(I)-jarosite and eventually the mineral dorallcharite (TlFe₃(SO₄)₂(OH)₆) as increasing amounts of Tl are employed. Birnessite, however, favorably uptakes Tl(I) through an irreversible surface adsorption mechanism, underlining the affinity of Tl for this mineral in the entire concentration range studied (0.5–5 mmol L⁻¹). Lastly, the presence of Tl(I) in conditions where aqueous molar ratio Tl/Mn is ∼0.25 inhibits the formation of birnessite since oxidation of Tl(I) to Tl(III) followed by precipitation of avicennite (Tl₂O₃) take place. Thus, the present research may provide useful insights on the role of both jarosite and birnessite minerals in Tl environmental cycles.
显示更多 [+] 显示较少 [-]