细化搜索
结果 311-320 的 7,292
Determination of multiple bisphenol analogues and their metabolites in human serum by liquid chromatography tandem mass spectrometry 全文
2022
Zhou, Jian | Chen, Xiao Hong | Zhang, Dan-Dan | Jin, Mi-Cong | Zhuang, Li | Du, Yong
To date, knowledge of internal human exposure to BPA and its analogues (particularly bisphenol S and bisphenol F, etc.) remains limited. In the present study, a method involving dispersive solid-phase extraction and LC/MS was proposed to investigate the contamination levels of 28 precursor bisphenols and 9 major metabolites in serum. The critical variables of preparation method were screened out by Plackett-Burman design and further optimized by central composite design. Left in optimal conditions, a total of 286 samples consisting of 153 males and 133 females were analyzed. The results showed that BPA dominated over all the cases with the highest positive rate (82.2% of all the surveyed people), and totally four metabolites (BPA β-D-glucuronide, BPA monosulfate, BPA bis-(β-D-glucuronide) and BPS monosulfate) were detectable. The occurrence of BPA bis-(β-D-glucuronide) in serum is reported for the first time and its higher positive rate and contamination concentrations suggested that it may be a more important metabolite of BPA than others. Negligible potential risk of health effects to blood donors was observed, since the estimated exposure levels (mean 32.1 ng/kg bw/day, 95th 123.2 ng/kg bw/day) were well below far less than the temporary tolerable reference dose of BPA that recommended by the European Food Safety Authority (4 μg/kg bw/day by). The reference level of BPA for healthy population was determined to be 4.09 μg/L via the percentile method.
显示更多 [+] 显示较少 [-]Distribution and correlation between antibiotic resistance genes and host-associated markers before and after swine fever in the longjiang watershed 全文
2022
Zhang, Yang | Li, Kaiming | Wu, Yongjie | Liu, Yi | Wu, Renren | Zhong, Yi | Xiao, Shijie | Mao, Han | Li, Guodong | Wang, Yishu | Li, Wenjing
Antibiotic resistance genes (ARGs) are abundantly shed in feces. Thus, it is crucial to identify their host sources so that ARG pollution can be effectively mitigated and aquatic ecosystems can be properly conserved. Here, spatiotemporal variations and sources of ARGs in the Longjiang watershed of South China were investigated by linking them with microbial source tracker (MST) indicators. The most frequently detected ARGs (>90%) were sulI, sulII, blaTEM, tetW, ermF, and the mobile element intI1. Spatial distribution analyses showed that tributaries contributed significantly more sulI, sulII, and ermF contamination to the Longjiang watershed than the main channel. MST indicator analysis revealed that the Longjiang watershed was contaminated mainly by human fecal pollution. Livestock- and poultry-associated fecal pollution significantly declined after the swine fever outbreak. The occurrence of most ARGs is largely explained by human fecal pollution. In contrast, pig fecal pollution might account for the prevalence of tetO. Moreover, combined human-pig fecal pollution contributed to the observed blaNDM₋₁ distribution in the Longjiang watershed. Subsequent analysis of the characteristics of MST markers disclosed that the relatively lower specificities of BacHum and Rum-2-Bac may lead to inaccurate results of tracking ARG pollution source. The present study determined spatiotemporal variations and ARG origins in the Longjiang watershed by combining MST markers. It also underscored the necessity of using multiple MST markers simultaneously to identify and characterize ARG pollution sources accurately.
显示更多 [+] 显示较少 [-]Antibiotics in mariculture systems: A review of occurrence, environmental behavior, and ecological effects 全文
2022
Wang, Xiaotong | Lin, Yufei | Zheng, Yang | Meng, Fanping
Antibiotics are widely applied to prevent and treat diseases occurred in mariculture. The often-open nature of mariculture production systems has led to antibiotic residue accumulation in the culturing and adjacent environments, which can adversely affect aquatic ecosystems, and even human. This review summarizes the occurrence, environmental behavior, and ecological effects of antibiotics in mariculture systems based on peer-reviewed papers. Forty-five different antibiotics (categorized into ten groups) have been detected in mariculture systems around the world, which is far greater than the number officially allowed. Indiscriminate use of antibiotics is relatively high among major producing countries in Asia, which highlights the need for stricter enforcement of regulations and policies and effective antibiotic removal methods. Compared with other environmental systems, some environmental characteristics of mariculture systems, such as high salinity and dissolved organic matter (DOM) content, can affect the migration and transformation processes of antibiotics. Residues of antibiotics favor the proliferation of antibiotic resistance genes (ARGs). Antibiotics and ARGs alter microbial communities and biogeochemical cycles, as well as posing threats to marine organisms and human health. This review may provide a valuable summary of the effects of antibiotics on mariculture systems.
显示更多 [+] 显示较少 [-]Lead zinc slag-based geopolymer: Demonstration of heavy metal solidification mechanism from the new perspectives of electronegativity and ion potential 全文
2022
Zhang, Qiushi | Cao, Xing | Sun, Shichang | Yang, Weichen | Fang, Lin | Ma, Rui | Lin, Chenghua | Li, Haowen
Lead-zinc slag (LZS) is a solid waste product that is rich in silicon and aluminum and has enormous resource potential for functional environmental functional geopolymer materials. Unfortunately, the solidification mechanism of heavy metals in geopolymers is still unclear, which is detrimental to the heavy metal solidification of LZS. In this study, we comprehensively studied and demonstrated the solidification mechanisms of Pb and Zn in geopolymers, based on the preparation of high-performance LZS-based geopolymers (compressive strength up to 89.3 MPa, and Pb and Zn solidification efficiency up to 93.1% and 90.0%, respectively). Thereafter, the solidification mechanism differences between Pb and Zn were explained by electronegativity and ion potential. Due to the ionic potential order of Zn²⁺> Pb²⁺> Na⁺, both Zn²⁺ and Pb²⁺ could exchange with Na⁺ in the geopolymer. In addition, due to the electronegativity order of Pb > Si > Zn, Pb could attack the [SiO₄] structure and form covalent bonds in the Pb–O structure, while Zn did not (shown by Raman spectroscopy). As a result, Pb simultaneously solidified in the geopolymer through covalent bonding and ion exchange, while Zn was solidified mainly by ion exchange. Thus, this work provides new perspectives and ideas for the solidification mechanisms of heavy metals in geopolymers.
显示更多 [+] 显示较少 [-]Roles of exogenous plant growth regulators on phytoextraction of Cd/Pb/Zn by Sedum alfredii Hance in contaminated soils 全文
2022
Chen, Zhiqin | Liu, Qizhen | Chen, Shaoning | Zhang, Shijun | Wang, Mei | Mujtaba Munir, Mehr Ahmed | Feng, Ying | He, Zhenli | Yang, Xiaoe
Plant growth regulators (PGRs) assisted phytoextraction was investigated as a viable phytoremediation technology to increase the phytoextraction efficiency in contaminated soils. This study aimed to evaluate the cadimum (Cd)/lead (Pb)/zinc (Zn) phytoextraction efficiency by a hyperaccumulator Sedum alfredii Hance (S. alfredii) treated with 9 PGRs, including indole-3-acetic acid (IAA), gibberellin (GA₃), cytokinin (CKs), abscisic acid (ABA), ethylene (ETH), brassinosteroid (BR), salicylic acid (SA), strigolactones (SL) and jasmonic acid (JA), in slightly or heavily contaminated (SC and HC, respectively) soil. Results demonstrated that PGRs were able to improve S. alfredii biomass, the most significant increases were observed in GA₃ and SL for HC soil, while for SC soil, IAA and BR exhibited positive effects. The levels of Cd, Pb and Zn in the shoots of S. alfredii treated with ABA and SL were noticeably greater than in the CK treatment in HC soil, while the uptake of metals were increased by IAA and CKs in SC soil. Combined with the results of biomass and metal contents in shoots, we found that ABA showed the highest Cd removal efficiency and the maximum Pb and Zn removal efficiency was observed with GA₃, which was 62.99%, 269.23%, and 41.18%, respectively higher than the control in HC soil. Meanwhile, compared to control, the maximum removal efficiency of Cd by IAA treatment (52.80%), Pb by JA treatment (165.1%), and Zn by BR treatment (44.97%) in the SC soil. Overall, our results suggested that these PGRs, especially, ABA, SL, IAA, BR and GA₃ had great potential in improving phytoremediation efficiency of S. alfredii grown in contaminated soils.
显示更多 [+] 显示较少 [-]Antlers of European roe deer (Capreolus capreolus) as monitoring units to assess lead pollution in a floodplain contaminated by historical metal ore mining, processing, and smelting in the Harz Mountains, Germany 全文
2022
Ludolphy, Catharina | Kierdorf, Uwe | Kierdorf, Horst
Lead concentrations in hard antlers of adult European roebucks (Capreolus capreolus) were analyzed to assess lead exposure of roe deer roaming the floodplain of the Innerste River, a river system contaminated due to historical metal ore mining, processing, and smelting in its upper reaches. Antler lead concentrations of roebucks culled in the period 1939–2018 within or close to the Innerste floodplain ranged between <0.17 mg Pb/kg (limit of detection) and 51.5 mg Pb/kg (air-dry weight). Median lead concentration in antlers of roebucks culled within the floodplain was 11.1 mg Pb/kg, compared to 2.3 mg Pb/kg in antlers of bucks culled in the floodplain vicinity (P < 0.01). Sampling year had no significant effect on antler lead concentrations (P = 0.748). Lead isotope ratios of antlers from the Innerste downstream area (²⁰⁶Pb/²⁰⁷Pb: 1.179–1.181; ²⁰⁸Pb/²⁰⁶Pb: 2.083–2.085) fell within the range of those reported for hydrothermal vein deposits from the upper catchment area of the Innerste River in the Harz Mountains. Our study demonstrates the long-lasting impact of the historical metal ore mining, processing, and smelting in the Harz Mountains on lead pollution in floodplains of rivers draining this area and the lead exposure of wild herbivores inhabiting the floodplains. Furthermore, it highlights the suitability of roe deer antlers for monitoring environmental lead levels and the usefulness of lead isotope signatures in antlers for source apportionment of lead pollution.
显示更多 [+] 显示较少 [-]Effect of polyethylene microplastics and acid rain on the agricultural soil ecosystem in Southern China 全文
2022
Liu, Ziqiang | Liu, Zhenxiu | Wu, Lizhu | Li, Yazheng | Wang, Jing | Wei, Hui | Zhang, Jiaen
The increasing microplastics (MPs) pollution and continuous acid rain coincide in many areas of the world. However, how MPs interact with acid rain is still unclear. Herein, we conducted a microcosm experiment to decipher the combined effect of polyethylene (PE) MPs (1%, 5%, and 10%) and acid rain (pH 4.0) on the agricultural soil ecosystem of Southern China, in which edaphic property, microbial community, enzymatic activity and CO₂ emission were investigated. The results showed that PE MPs significantly decreased soil water retention and nitrate nitrogen content regardless of acid rain. Soil total nitrogen significantly decreased under the co-exposure of 10% PE MPs and acid rain. However, PE MPs did not alter soil microbial biomass, i.e., the content of microbial biomass carbon, total phospholipid fatty acids, with or without acid rain. 10% PE MPs and acid rain treatment significantly increased the activity of catalase and soil CO₂ emission. PE MPs addition did not affect the temperature sensitivity (Q₁₀) of soil CO₂ emission regardless of acid rain. These findings suggest that MPs may interact with acid rain to affect soil ecosystems, thus underscoring the necessity to consider the interaction between MPs and ambient environmental factors when exploring the impact of MPs on the soil biodiversity and function.
显示更多 [+] 显示较少 [-]Strategies for improving the catalytic activity of metal-organic frameworks and derivatives in SR-AOPs: Facing emerging environmental pollutants 全文
2022
Jiang, Danni | Fang, Di | Zhou, Yu | Wang, Zhiwei | Yang, Zihao | Zhu, Jian | Liu, Zhiming
As persulfate activator, Metal organic frameworks (MOFs) and derivatives are widely concerned in degradation of emerging environmental pollutants by advanced oxygen technology dominated by sulfate radical (▪) (SR-AOPs). However, the poor stability and low catalytic efficiency limit the performance of MOFs, requiring multiple strategies to further enhance their catalytic activity. The aim of this paper is to improve the catalytic activity of MOFs and their derivatives by physical and chemical enhancement strategies. Physical enhancement strategies mainly refer to the activation strategies including thermal activation, microwave activation and photoactivation. However, the physical enhancement strategies need energy consumption and require high stability of MOFs. As a substitute, chemical enhancement strategies are more widely used and represented by optimization, modification, composites and derivatives. In addition, the identification of reactive oxygen species, active site and electron distribution are important for distinguishing radical and non-radical pathways. Finally, as a new wastewater treatment technology exploration of unknown areas in SR-AOPs could better promote the technology development.
显示更多 [+] 显示较少 [-]Fate of river-derived microplastics from the South China Sea: Sources to surrounding seas, shores, and abysses 全文
2022
Matsushita, Kosei | Uchiyama, Yusuke | Takaura, Naru | Kosako, Taichi
Microplastics (MPs) in the ocean have been widely recognized as causing global marine environmental problems. To gain a quantitative and comprehensive understanding of oceanic MP contamination, detailed numerical Lagrangian particle tracking experiments were conducted to evaluate the regional oceanic transport and dispersal of MPs in the South China Sea (SCS) derived from three major rivers, Pearl (China), Mekong (Vietnam), and Pasig (the Philippines), which are known to discharge large amounts of plastic waste into the SCS. As previous field surveys have suggested, MP contamination spreads from the surface to the deeper ocean in the water column, we thus considered three types of MPs: (1) positively buoyant (light) MPs, (2) positively buoyant (light) MPs with random walk diffusion, and (3) full 3-D tracking of non-buoyant MPs that are passively transported by ambient currents. Transport patterns of these MPs from the three rivers clearly showed the intra-annual variability associated with seasonally varying circulations driven by the Asian monsoons in the SCS. Many MPs floating during the prevailing southwest monsoon are transported to the northwest Pacific Ocean and the East China Sea through the Luzon Strait and the Taiwan Strait to form MP hotspots. Non-buoyant MPs are broadly transported from the surface layer to depths of approximately 100 m or deeper, where in situ observations are rare. In addition, the buoyant MPs drifting on the continental shelf originating from southern China tend to be pushed toward the shore and beached by northward wind-induced currents more pronouncedly than the non-buoyant MPs. Therefore, the river-derived MPs to the SCS were found to serve as sources to adjacent basins and oceans, to be distributed not only in the upper layer but also in the abyssal ocean (non-buoyant MPs), and to be transported to the shores (buoyant MPs).
显示更多 [+] 显示较少 [-]Claroideoglomus etunicatum affects the structural and functional genes of the rhizosphere microbial community to help maize resist Cd and La stresses 全文
2022
Hao, Baihui | Zhang, Zhechao | Bao, Zhihua | Hao, Lijun | Diao, Fengwei | Li, Frank Yonghong | Guo, Wei
Arbuscular mycorrhizal fungi (AMF) and plant rhizosphere microbes reportedly enhance plant tolerance to abiotic stresses and promote plant growth in contaminated soils. The co-contamination of soil by heavy metals (e.g., Cd) and rare earth elements (e.g., La) represents a severe environmental problem. Although the influence of AMF in the phytoremediation of contaminated soils is well documented, the underlying interactive mechanisms between AMF and rhizosphere microbes are still unclear. We conducted a greenhouse pot experiment to evaluate the effects of AMF (Claroideoglomus etunicatum) on maize growth, nutrient and metal uptake, rhizosphere microbial community, and functional genes in soils with separate and combined applications of Cd and La. The purpose of this experiment was to explore the mechanism of AMF affecting plant growth and metal uptake via interactions with rhizosphere microbes. We found that C. etunicatum (i) significantly enhanced plant nutritional level and biomass and decreased metal concentration in the co-contaminated soil; (ii) significantly altered the structure of maize rhizosphere bacterial and fungal communities; (iii) strongly enriched the abundance of carbohydrate metabolism genes, ammonia and nitrate production genes, IAA (indole-3-acetic acid) and ACC deaminase (1-aminocyclopropane-1-carboxylate) genes, and slightly altered the abundance of P-related functional genes; (iv) regulated the abundance of microbial quorum sensing system and metal membrane transporter genes, thereby improving the stability and adaptability of the rhizosphere microbial community. This study provides evidence of AMF improving plant growth and resistance to Cd and La stresses by regulating plant rhizosphere microbial communities and aids our understanding of the underlying mechanisms.
显示更多 [+] 显示较少 [-]