细化搜索
结果 331-340 的 7,200
Exposure to an androgenic agricultural pollutant does not alter metabolic rate, behaviour, or morphology of tadpoles 全文
2022
Martin, Jake M. | Orford, Jack T. | Melo, Gabriela C. | Shan, Hong | Mason, Rachel T. | Ozeki, Shiho | Bertram, Michael G. | Wong, Bob B.M. | Alton, Lesley A.
Globally, amphibian species are experiencing dramatic population declines, and many face the risk of imminent extinction. Endocrine-disrupting chemicals (EDCs) have been recognised as an underappreciated factor contributing to global amphibian declines. In this regard, the use of hormonal growth promotants in the livestock industry provides a direct pathway for EDCs to enter the environment—including the potent anabolic steroid 17β-trenbolone. Emerging evidence suggests that 17β-trenbolone can impact traits related to metabolism, somatic growth, and behaviour in non-target species. However, far less is known about possible effects of 17β-trenbolone on anuran species, particularly during early life stages. Accordingly, in the present study we investigated the effects of 28-day exposure to 17β-trenbolone (mean measured concentrations: 10 and 66 ng/L) on body size, body condition, metabolic rate, and anxiety-related behaviour of tadpoles (Limnodynastes tasmaniensis). Specifically, we measured rates of O₂ consumption of individual tadpoles as a proxy for metabolic rate and quantified their swimming activity and their time spent in the upper half of the water column as indicators of anxiety-related behaviour. Counter to our predictions based on effects observed in other taxa, we detected no effect of 17β-trenbolone on body size, metabolic rate, or behaviour of tadpoles; although, we did detect a subtle, but statistically significant decrease in body condition at the highest 17β-trenbolone concentration. We hypothesise that 17β-trenbolone may induce taxa-specific effects on metabolic function, growth, and anxiety-related behaviour, with anurans being less sensitive to disruption than fish, and encourage further cross-taxa investigation to test this hypothesis.
显示更多 [+] 显示较少 [-]Bioelectrochemical degradation of petroleum hydrocarbons: A critical review and future perspectives 全文
2022
He, Yuqing | Zhou, Qixing | Mo, Fan | Li, Tian | Liu, Jianv
As typical pollutants, petroleum hydrocarbons that are widely present in various environmental media such as soil, water, sediments, and air, seriously endanger living organisms and human health. In the meantime, as a green environmental technology that integrates pollutant removal and resource recovery, bioelectrochemical systems (BESs) have been extensively applied to the removal of petroleum hydrocarbons from the environment. This review introduces working principles of BESs, following which it discusses the different reactor structures, application progresses, and key optimization factors when treating water, sewage sludges, sediments, and soil. Furthermore, bibliometrics was first used in this field to analyze the evolution of knowledge structure and forecast future hot topics. The research focus has shifted from the early generation of bioelectric energy to exploring mechanisms of soil remediation and microbial metabolisms, which will be closely integrated in the future. Finally, the future prospects of this field are proposed. This review focuses on the research status of bioelectrochemical degradation of petroleum hydrocarbons and provides a scientific reference for subsequent research.
显示更多 [+] 显示较少 [-]Effects of polystyrene nanoplastics on lead toxicity in dandelion seedlings 全文
2022
Increasing rates of commercialization and industrialization have led to the comprehensive evaluation of toxic effects of microplastics on crop plants. However, research on the impact of functionalized polystyrene nanoplastics on the toxicity of heavy metals remains limited. This study investigated the effects of polystyrene, carboxy-modified polystyrene, and amino-modified polystyrene on lead (Pb) toxicity in dandelion seedlings. The results showed that carboxy -modified polystyrene with a negative charge absorbed more Pb²⁺ than polystyrene and amino-modified polystyrene, and their maximum adsorption amounts were 5.328, 0.247, and 0.153 μg g⁻¹, respectively. The hydroponic experiment demonstrated that single amino-modified polystyrene was more toxic to dandelion seedlings than polystyrene and carboxy-modified polystyrene. The presence of Pb²⁺ was found to increase antioxidant enzymes (superoxide dismutase and catalase) and non-antioxidant enzymes (glutathione and ascorbic acid) activities in response to excessive reactive oxygen species in dandelion leaves and roots treated with polystyrene and carboxy-modified polystyrene, while it did not change much when amino-modified polystyrene was added. Interestingly, compared with single Pb²⁺, the addition of amino-modified polystyrene with positive charges induced an obvious decrease in the above parameters; however, they declined slightly in the treatments with polystyrene and carboxy-modified polystyrene despite a stronger adsorption capacity for Pb²⁺. Similarly, the bioactive compounds, including flavonoids, polyphenols, and polysaccharides in dandelion, showed a scavenging effect on O₂⁻ and H₂O₂, thereby inhibiting the accumulation and reducing medicinal properties. This study found that the effects of microplastics on the uptake, distribution, and toxicity of heavy metals depended on the nanoparticle surface charge.
显示更多 [+] 显示较少 [-]Distribution of microplastics present in a stream that receives discharge from wastewater treatment plants 全文
2022
Montecinos, S. | Gil, M. | Tognana, S. | Salgueiro, W. | Amalvy, J.
The presence of microplastics (MPs) in freshwater systems that receive discharge of urban effluent implies a great environmental impact. In order to be able to generate proposals that solve this problem, it is necessary to know in detail the contributions of different MPs sources. The aim of this work was to study the contribution of urban sewage discharge to MPs pollution in a stream that runs through a medium-sized city. The spatial distribution of MPs with sizes between 100 μm and 1.5 mm present in surface water was measured and their characteristics, dimensions, shapes and identification were determined. Physical-chemical parameters of the stream water were measured, and a decrease in water quality was found due to wastewater treatment plants. The main source of MPs was effluent from the plants (97% of the total MPs), while the rest came from storm drains and discharge of tributaries. The maximum concentration of MPs found was around 72,000 MP/L (equivalent to 53 million MPs/s), at a point after discharge from both plants. Around 70% of MPs correspond to microfibers with a mean length of around 300 μm and a mean width of around 15 μm, and they are mainly polyethylene fibers. The remaining 30% of MPs are particles with lengths of around 140 μm. The transport of MPs between a point located after discharge of the plants and another point located about 3 km further on was studied, and no significant variation was found in the concentration of MPs. Electrical conductivity was used as a conservative tracer of MPs concentration. This work presents for the first time a detailed analysis of different contributions of MPs to a freshwater system in South America, which receives discharge of wastewater treatment plants, evidencing its important role in pollution.
显示更多 [+] 显示较少 [-]Co-transport and co-release of Eu(III) with bentonite colloids in saturated porous sand columns: Controlling factors and governing mechanisms 全文
2022
Accurate prediction of the colloid-driven transport of radionuclides in porous media is critical for the long-term safety assessment of radioactive waste disposal repository. However, the co-transport and corelease process of radionuclides with colloids have not been well documented, the intrinsic mechanisms for colloids-driven retention/transport of radionuclides are still pending for further discussion. Thus the controlling factors and governing mechanisms of co-transport and co-release behavior of Eu(III) with bentonite colloids (BC) were discussed and quantified by combining laboratory-scale column experiments, colloid filtration theory and advection dispersion equation model. The results showed that the role of colloids in facilitating or retarding the Eu(III) transport in porous media varied with cations concentration, pH, and humic acid (HA). The transport of Eu(III) was facilitated by the dispersed colloids under the low ionic strength and high pH conditions, while was impeded by the aggregated colloids cluster. The enhancement of Eu(III) transport was not monotonically risen with the increase of colloids concentration, the most optimized colloids concentration in facilitating Eu(III) transport was approximately 150 mg L⁻¹. HA showed significant promotion on both Eu(III) and colloid transport because of not only its strong Eu(III) complexion ability but also the increased dispersion of HA-coated colloid particles. The HA and BC displayed a synergistic effect on Eu(III) transport, the co-transport occurred by forming the ternary BC-HA-Eu(III) hybrid. The transport patterns could be simulated well with a two-site model that used the advection dispersion equation by reflecting the blocking effect. The retarded Eu(III) on the stationary phase was released and remobilized by the introduction of colloids, or by a transient reduction in cation concentration. The findings are essential for predicting the geological fate and the migration risk of radionuclides in the repository environment.
显示更多 [+] 显示较少 [-]Effect of sulfate application on inhibition of arsenic bioaccumulation in rice (Oryza sativa L.) with consequent health risk assessment of cooked rice arsenic on human: A pot to plate study 全文
2022
Arsenic (As) in rice is posing a serious threat worldwide and consumption of As contaminated rice by human is causing health risks. A pot experiment with different levels of sulfate dosage (0, 20, 40, 60 and 80 mg/kg) was set up in this study to explore the influence of sulfate fertilizer on rice plant growth, yield, and As accumulation in rice grain. Apart from As bioaccumulation in rice grains, the As fraction of cooked rice was quantified, and the health risks associated with cooked rice consumption were also investigated. The sulfate application significantly (p ≤ 0.05) enhanced the chlorophyll, tiller number, grains per panicle, grain and biomass yield under As stressed condition. The sulfate application also reduced the oxidative stress and antioxidant activity in rice plants. Sulfate fertigation improved the accumulation of total sulfur (S) and reduced the uptake and translocation of As in rice plants. Arsenic concentration in rice grain was reduced by 50.1% in S80 treatment (80 mg of sulfate/kg of soil) as compared to S0 set. The reduction percentage of As in cooked parboiled and sunned rice with correspond to raw rice ranged from 55.9 to 74% and 40.3–60.7%, respectively. However, the sulfate application and cooking of parboiled rice reduced the potential non-cancer and cancer risk as compared to sunned rice. The S80 treatment and cooking of parboiled rice reduce the As exposure for both children and adults by 51% as compared to cooked sunned rice under S80 treatment and this trend was similar for all treatments. Therefore, sulfate application in soil can be recommended to produce safer rice grains and subsequent cooking of parboiled rice grain with low-As contaminated water need to be done to avoid any potential health risk in As endemic areas.
显示更多 [+] 显示较少 [-]Evaluation of genotoxicity in bat species found on agricultural landscapes of the Cerrado savanna, central Brazil 全文
2022
Habitat loss and fragmentation together represent the most significant threat to the world's biodiversity. In order to guarantee the survival of this diversity, the monitoring of bioindicators can provide important insights into the health of a natural environment. In this context, we used the comet assay and micronucleus test to evaluate the genotoxic susceptibility of 126 bats of eight species captured in soybean and sugarcane plantation areas, together with a control area (conservation unit) in the Cerrado savanna of central Brazil. No significant differences were found between the specimens captured in the sugarcane and control areas in the frequency of micronuclei and DNA damage (comet assay). However, the omnivore Phyllostomus hastatus had a higher frequency of nuclear abnormalities than the frugivore Carollia perspicillata in the sugarcane area. Insectivorous and frugivorous bats presented a higher frequency of genotoxic damage than the nectarivores in the soybean area. In general, DNA damage and micronuclei were significantly more frequent in agricultural environments than in the control area. While agricultural development is an economic necessity in developing countries, the impacts on the natural landscape may result in genotoxic damage to the local fauna, such as bats. Over the medium to long term, then DNA damage may have an increasingly negative impact on the wellbeing of the local species.
显示更多 [+] 显示较少 [-]Thermal processing reduces PFAS concentrations in blue food – A systematic review and meta-analysis 全文
2022
Vendl, Catharina | Pottier, Patrice | Taylor, Matthew D. | Bräunig, Jennifer | Gibson, Matthew J. | Hesselson, Daniel | Neely, G Gregory | Lagisz, Malgorzata | Nakagawa, Shinichi
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in the environment and often ingested with food. PFAS exposure in people can have detrimental health consequences. Therefore, reducing PFAS burdens in food items is of great importance to public health. Here, we investigated whether cooking reduces PFAS concentrations in animal-derived food products by synthesizing experimental studies. Further, we examined the moderating effects of the following five variables: cooking time, liquid/animal tissue ratio, cooking temperature, carbon chain length of PFAS and the cooking category (oil-based, water-based & no-liquid cooking). In our systematic review searches, we obtained 512 effect sizes (relative differences in PFAS concentration between raw and cooked samples) from 10 relevant studies. These studies exclusively explored changes in PFAS concentrations in cooked seafood and freshwater fish. Our multilevel-meta-analysis has revealed that, on average, cooking reduced PFAS concentrations by 29%, although heterogeneity among effect sizes was very high (I² = 94.65%). Our five moderators cumulatively explained 49% of the observed heterogeneity. Specifically, an increase in cooking time and liquid/animal tissue ratio, as well as shorter carbon chain length of PFAS (when cooked with oil) were associated with significant reductions in PFAS concentrations. The effects of different ways of cooking depended on the other moderators, while the effect of cooking temperature itself was not significant. Overall, cooking can reduce PFAS concentrations in blue food (seafood and freshwater fish). However, it is important to note that complete PFAS elimination requires unrealistically long cooking times and large liquid/animal tissue ratios. Currently, literature on the impact of cooking of terrestrial animal produce on PFAS concentrations is lacking, which limits the inference and generalisation of our meta-analysis. However, our work represents the first step towards developing guidelines to reduce PFAS in food via cooking exclusively with common kitchen items and techniques.
显示更多 [+] 显示较少 [-]Soil N2O emission in Cinnamomum camphora plantations along an urbanization gradient altered by changes in litter input and microbial community composition 全文
2022
Xu, Xintong | He, Chang | Zhong, Chuan | Zhang, Qiang | Yuan, Xi | Hu, Xiaofei | Deng, Wenping | Wang, Jiawei | Du, Qu | Zhang, Ling
Urbanization alters land use, increasing the rate of greenhouse gas (GHG) emissions and hence atmospheric compositions. Nitrous oxide (N₂O) is a major GHG that contributes substantially to global warming. N₂O emissions are sensitive to changes in substrate availabilities, such as litter and N input, as well as micro-environmental factors caused by land-use change upon urbanization. However, the potential impacts of changing litter and N on soil N₂O emissions along urban-rural gradients is not well understood. Here, we conducted an in situ study over 19 months in Cinnamomum camphora plantations along an urban-rural gradient, to examine the effects of the urban-rural gradient, N and litter input on N₂O emissions from C. camphora plantation soils and the underlying mechanisms via N, litter and microbial communities. The results showed that urban soil N₂O emissions were 105% and 196% higher than those from suburban and rural soil, respectively, and co-occurred with a higher abundance of AOA, nirS and nirK genes. Litter removal increased cumulative N₂O emissions by 59.7%, 50.9% and 43.3% from urban, suburban and rural soils, respectively. Compared with litter kept treatment, increases in AOA and nirK abundance were observed in urban soil, and higher rural nirS abundance occurred following litter removal. Additionally, the relatively higher soil temperature and available N content in the urban soil increased N₂O emissions compared with the suburban and rural soil. Therefore, in addition to changes in microbial communities and abiotic environmental factors, litter kept in C. camphora plantations along an urban-rural gradient is also important in mitigating N₂O emissions, providing a potential strategy for the mitigation of N₂O emissions.
显示更多 [+] 显示较少 [-]Morphological, physiological and behavioral responses of an intertidal snail, Acanthina monodon (Pallas), to projected ocean acidification and cooling water conditions in upwelling ecosystems 全文
2022
Duarte, Cristian | Jahnsen-Guzmán, Nicole | Quijón, Pedro A. | Manríquez, Patricio H. | Lardies, Marco A. | Fernández, Carolina | Reyes, Miguel | Zapata, Javier | García-Huidobro, M Roberto | Lagos, Nelson A.
Ocean acidification (OA) is expected to rise towards the end of the 21st century altering the life history traits in marine organisms. Upwelling systems will not escape OA, but unlike other areas of the ocean, cooling effects are expected to intensify in these systems. Regardless, studies evaluating the combined effects of OA and cooling remain scarce. We addressed this gap using a mesocosm system, where we exposed juveniles of the intertidal muricid snail Acanthina monodon to current and projected pCO₂ (500 vs. 1500 ppm) and temperature (15 vs. 10 °C) from the southeast Pacific upwelling system. After 9 weeks of experimental exposure to those conditions, we conducted three estimations of growth (wet weight, shell length and shell peristomal length), in addition to measuring calcification, metabolic and feeding rates and the ability of these organisms to return to the normal upright position after being overturned (self-righting). Growth, feeding and calcification rates increased in projected cooling conditions (10 °C) but were unaffected by pCO₂ or the interaction between pCO₂ and temperature. Instead, metabolic rates were driven by pCO₂, but a significant interaction with temperature suggests that in cooler conditions, metabolic rates will increase when associated with high pCO₂ levels. Snail self-righting times were not affected across treatments. These results suggest that colder temperatures projected for this area would drive this species growth, feeding and calcification, and consequently, some of its population biology and productivity. However, the snails may need to compensate for the increase in metabolic rates under the effects of ocean acidification. Although A. monodon ability to adjust to individual or combined stressors will likely account for some of the changes described here, our results point to a complex dynamic to take place in intertidal habitats associated with upwelling systems.
显示更多 [+] 显示较少 [-]