细化搜索
结果 331-340 的 7,292
Effects of Covid-19 pandemic lockdown and environmental pollution assessment in Campania region (Italy) through the analysis of heavy metals in honeybees 全文
2022
Scivicco, Marcello | Nolasco, Agata | Esposito, Luigi | Ariano, Andrea | Squillante, Jonathan | Esposito, Francesco | Cirillo Sirri, Teresa | Severino, Lorella
The Covid-19 outbreak had a critical impact on a massive amount of human activities as well as the global health system. On the other hand, the lockdown and related suspension of working activities reduced pollution emissions. The use of biomonitoring is an efficient and quite recent tool to assess environmental pollution through the analysis of a proper bioindicator, such as bees. This study set out to ascertain the impact of the Covid-19 pandemic lockdown on the environmental occurrence of eleven heavy metals in the Campania region (Italy) by analyzing bees and bee products. A further aim of this study was the assessment of the Honeybee Contamination Index (HCI) in three different areas of the Campania region and its comparison with other Italian areas to depict the current environmental pollutants levels of heavy metals. The results showed that the levels of heavy metals bioaccumulated by bees during the pandemic lockdown (T1) were statistically lower than the sampling times after Covid-19 restrictions and the resumption of some or all activities (T2 and T3). A comparable trend was observed in wax and pollen. However, bee, pollen, and wax showed higher levels of Cd and Hg in T1 than T2 and T3. The analysis of the HCI showed a low contamination level of the sampling sites for Cd and Pb, and an intermediate-high level as regards Ni and Cr. The biomonitoring study highlighted a decrease of heavy metals in the environmental compartments due to the intense pandemic restrictions. Therefore, Apis mellifera and other bee products remain a reliable and alternative tool for environmental pollution assessment.
显示更多 [+] 显示较少 [-]Copper isotope ratios allowed for quantifying the contribution of coal mining and combustion to total soil copper concentrations in China 全文
2022
Ren, Mengxi | Zheng, Liugen | Wang, Dandan | Chen, Xing | Dong, Xianglin | Wei, Xiangping | Cheng, Hua
The most prominent source of Cu contamination in soils is metal mining and processing, partly since the Middle Age. However, coal mining and combustion can also cause (some) Cu contamination. We studied the distribution of Cu concentrations and isotope ratios in soils of the Huaibei coal mining area. The contribution of the coal mining and combustion to total Cu concentrations in soil was determined with a two-end-member mixing model based on the distinct δ⁶⁵Cu values of the Cu emitted from coal mining and combustion and in native soil. The mean Cu concentration of 75 mg kg⁻¹ exceeded the local soil background value (round to 22.13 mg kg⁻¹). The similar δ⁶⁵Cu value of grass near the coal mining and combustion operation as in gangue and flying ash indicated a superficial Cu contamination. Mining input was the dominant source of Cu in the contaminated soils, contributing up to 95% and on average 72% of the total Cu in the topsoils. The mining-derived Cu was leached to a depth of 65 cm, where still 29% of the Cu could be attributed to the mining emissions. Grasses showed lower δ⁶⁵Cu values than the topsoils, because of the preferential uptake of light Cu isotopes. However, the Δ⁶⁵Cugᵣₐₛₛ₋ₛₒᵢₗ was lower in the contaminated than the uncontaminated area because of superficial adsorption of isotopically heavy Cu from the mining emissions. Overall, in this study the distinct δ⁶⁵Cu values of the mining-derived Cu emissions and the native soil allowed for the quantification of the mining-derived Cu and had already reached the subsoil and contaminated the grass by superficial adsorption in only 60 years of mining operation.
显示更多 [+] 显示较少 [-]Optimizing nitrogen management reduces mineral nitrogen leaching loss mainly by decreasing water leakage in vegetable fields under plastic-shed greenhouse 全文
2022
Zhou, Weiwei | Lv, Haofeng | Chen, Fei | Wang, Qunyan | Li, Junliang | Chen, Qing | Liang, Bin
Excessive fertilization leads to high nitrogen (N) leaching under intensive plastic-shed vegetable production systems, and thereby results in the contaminations of ground or surface water. Therefore, it is urgent to develop cost-effective strategies of nitrogen management to overcome these obstacles. A 15-year experiment in annual double-cropping systems was conducted to explore impacts of N application rate and straw amendment on mineral N leaching loss in plastic-shed greenhouse. The results showed that seasonal mineral N leaching was up to 103.4–603.4 kg N ha⁻¹, accounting for 12%–41% of total N input under conventional N fertilization management. However, optimized N application rates by 47% and straw addition obviously decreased mineral N leaching by 4%–86%, while had no negative impacts on N uptake and tomato yields. These large decreases of N leaching loss were mainly due to the reduced leachate amount and followed by N concentration in leachate, which was supported by improved soil water holding capacity after optimizing N application rates and straw addition. On average, 52% of water leachate and 55% of mineral N leaching simultaneously occurred within 40 days after planting, further indicating the dominant role of water leakage in regulating mineral N leaching loss. Moreover, decreasing mineral N leaching was beneficial for reducing leaching loss of base cations. Therefore, optimized N application rates and straw amendment effectively alleviates mineral N leaching losses mainly by controlling the water leakage without yield loss in plastic-shed greenhouse, making this strategy promising and interesting from environmental and economical viewpoints.
显示更多 [+] 显示较少 [-]Nanoanalysis of the leaching process simulation of Pb in agricultural soil 全文
2022
Liu, Shuyu | Min, Xin | Xiang, Minghui | Wang, Jiangli | Tang, Lei | Liu, Li
Using the Spectral characteristics of gold nanorods to investigate heavy metals Pb in agricultural soils. Studied included: (1) The effects of humic acid on Pb transformation and its formation changing were explored. The laboratory model was established to simulate Pb leaching process in the soil and investigated the change of total Pb content at different layers. (2) The migration and transformation of different forms Pb were studied by the nano system. The effect of humic acid and pH were analyzed based on the nano-analysis method. (3) The relationship between various forms Pb irons were analyzed. (4) The data showed that ion exchange state and iron-manganese oxidation state Pb were more likely to enriched at 0 cm depth, and organic bound state was more likely to enriched at 10 cm depth. Humic acid increased the solidify ability of different forms of Pb in agricultural soil, and the analysis system was efficient to supply the exactly transition process.
显示更多 [+] 显示较少 [-]Effects of exposure to per- and polyfluoroalkyl substances on vaccine antibodies: A systematic review and meta-analysis based on epidemiological studies 全文
2022
Zhang, Xin | Xue, Liang | Deji, Zhuoma | Wang, Xin | Liu, Peng | Lü, Jing | Zhou, Ruke | Huang, Zhenzhen
Vaccines are essential for children to defend against infection. Per- and polyfluoroalkyl substances (PFAS) are emerging contaminants with the characteristics of persistence and bioaccumulation. PFAS exposure can affect the function of the nervous, endocrine, and immune system of animals and humans. We aimed to conduct a systematic review and meta-analysis of the epidemiological studies investigating potential relationships between PFAS exposure and vaccine antibody levels, and assessed whether PFAS would affect vaccine response in healthy children. A literature search was conducted in PubMed, Web of Science, and Scopus databases up to February 2022. We chose studies that measured serum vaccines antibodies and PFAS concentrations of the participants. Essential information, including mean difference of percentage change, regression coefficient, odds ratio, Spearman correlation coefficient, and 95% confidence intervals, were extracted from the selected studies to conduct descriptive analysis and meta-analysis where appropriate. The qualities of these studies were evaluated as well. Finally, nine epidemiological studies about children met our inclusion criteria. A high degree of heterogeneity is observed in terms of breastfeeding time, confounder control, and detection method. Exposure to perfluorooctanoic acid and perfluorohexane sulfonic acid is negatively associated with tetanus antibody level in children without heterogeneity by Cochran's Q test (p = 0.26; p = 0.55), and exposure to perfluorohexane sulfonate is negatively associated with tetanus antibody level but with heterogeneity (p = 0.04). This comprehensive review suggests that PFAS can have adverse health effects on children by hindering the production of vaccine antibodies. There are some consistent and negative associations between children exposure to certain PFAS and tetanus antibody level. The association of the other four vaccines (measles, rubella, mumps, and influenza) with PFAS remains uncertain, because very few studies are available. Further studies are needed to validate the possible associations.
显示更多 [+] 显示较少 [-]TBBPA and its alternative TCBPA induced ROS-dependent mitochondria-mediated apoptosis in the liver of Rana nigromaculata 全文
2022
Jia, Xiuying | Yan, Ruopeng | Lin, Huikang | Liu, Zhiquan | Shen, Lilai | Yang, Hongmei | Wu, Haoying | Shan, Xiaodong | Zhang, Hangjun
Tetrabromobisphenol A (TBBPA), which is the most widely employed brominated flame retardant, and its alternative tetrachlorobisphenol A (TCBPA) are widely distributed in aquatic environments. In the present study, the hepatotoxicity induced by TBBPA and TCBPA was investigated in Rana nigromaculata, and the potential mechanisms were investigated with a particular focus on ROS (reactive oxygen species) -dependent mitochondria-mediated apoptosis. Healthy adult frogs were exposed to 0, 0.001, 0.01, 0.1, and 1 mg/L waterborne TBBPA and TCBPA for 14 days. The results showed that liver weight was significantly increased by 51.52%–98.99% in the 0.01, 0.1, and 1 mg/L TBBPA and TCBPA groups relative to the control. Histological examination revealed that the structure of the liver, to some extent, was influenced by TBBPA and TCBPA with nuclear shrinkage and mitochondrial swelling. Meanwhile, TBBPA and TCBPA have significantly increased the alanine transaminase level in serum and the content of ROS, while inhibiting the activity of superoxide dismutase in the liver. In addition, DNA fragments were observed in the TBBPA and TCBPA groups relative to the control. Expression of Cytochrome C was significantly increased by 1.13-, 1.38-, 1.60-, and 2.46-fold in 0.001, 0.01, 0.1, and 1 mg/L TBBPA, and by 1.26-, 1.51-, 2.14-, and 2.98- fold in 0.001, 0.01, 0.1, and 1 mg/L TCBPA, respectively, which indicated that TCBPA may be more toxic than TBBPA. Similarly, the ratio of Bax/Bcl-2 was increased in a dose-dependent manner. These results indicated that apoptosis in the ROS-dependent mitochondrial pathway mediates hepatotoxicity caused by TBBPA and TCBPA. The present study will facilitate an understanding of the toxicity mechanism of flame retardants.
显示更多 [+] 显示较少 [-]Correlative distribution of DOM and heavy metals in the soils of the Zhangxi watershed in Ningbo city, East of China 全文
2022
Wang, Zhe | Han, Ruixia | Muhammad, Azeem | Guan, Dong-Xing | Zama, Eric | Li, Gang
In peri-urban critical zones, soil ecosystems are highly affected by increasing urbanization, causing probably an intense interaction between dissolved organic matter (DOM) and heavy metals in soil. Such interaction is critical for understanding the biogeochemical cycles of both organic matter and heavy metals in these zones. However, limited research has reported the correlative distribution of DOM and heavy metals at high seasonal and spatial resolutions in peri-urban critical zones. In this study, 160 soil samples were collected from the farmland and forestland of Zhangxi watershed, in Ningbo, eastern China during spring, summer, fall and winter four seasons. UV–visible absorption and fluorescent spectroscopy were used to explore the optical characteristics of DOM. The results indicated a mixture of exogenous and autogenous sources of DOM in the Zhangxi watershed, while DOM in farmland exhibited a higher degree of aromaticity and humification than that in forestland. Fluorescent results showed that humic acid-like, fulvic acid-like and microbial-derived humic-like fractions were mostly affected by seasons. The distribution of heavy metals was affected mainly by land-use changes and seasons. Correlation analysis between heavy metals and DOM characteristics and components suggested that aromatic and humic substances were more favorable in binding with EDTA extractable Ni, Cu, Zn and Cd. The bioavailable Cd and Pb decreased due to binding with humic fractions, indicating its great effects on the bioavailability of Cd and Pb. Overall, these findings provide an insight into the correlative distributions of DOM and heavy metals in peri-urban areas, thereby highlighting their biogeochemical cycling in the soil environment.
显示更多 [+] 显示较少 [-]The effects of weathering-induced degradation of polymers in the microplastic study involving reduction of organic matter 全文
2022
Lessa Belone, Maria Clara | Kokko, Marika | Sarlin, Essi
The analysis of microplastics in complex environmental samples requires the use of chemicals to reduce the organic matrix. This procedure should be evaluated in terms of the preservation of the microplastic's integrity, typically done with pristine reference microplastics. However, real microplastics are most likely degraded due to weathering, so pristine reference microplastics might not depict the appropriateness of the process. This study performed a purification process using sodium dodecyl sulfate and hydrogen peroxide on sewage sludge containing LLDPE, HDPE, PP, PS, PET, PA66 and SBR samples exposed to simulated environmental weathering. The degradation of the polymers was assessed by analyzing surface morphology, mass variation, and mechanical, thermal and chemical properties. Comparison with pristine polymers revealed that the purification process can lead to more detrimental effects if the polymers are weathered. After the purification process, some important observations were: 1) LLDPE, PP and SBR surfaces had cracks in the weathered samples that were not observed in the pristine samples, 2) weathered LLDPE, PP and PA66 experienced greater mass loss than pristine, 3) the fragmentation propensity of weathered LLDPE, HDPE, PP, PS and SBR increased compared to pristine samples and 4) the main characteristic peaks in FTIR spectrum could be identified and used for chemical identification of most polymers for pristine and weathered samples. Based on the findings of this study, when analyzing the efficiency and adequacy of a purification process with methods based on surface morphology, mass variation and particle counting indicators, it is recommended to consider the differences that potentially arise between pristine and weathered microplastics, especially for polyolefins (PEs and PP).
显示更多 [+] 显示较少 [-]Antibiotics degradation by UV/chlor(am)ine advanced oxidation processes: A comprehensive review 全文
2022
Lu, Zedong | Ling, Yanchen | Sun, Wenjun | Liu, Chaoran | Mao, Ted | Ao, Xiuwei | Huang, Tianyin
Antibiotics are emerging contaminants in aquatic environments which pose serious risks to the ecological environment and human health. Advanced oxidation processes (AOPs) based on ultraviolet (UV) light have good application prospects for antibiotic degradation. As new and developing UV-AOPs, UV/chlorine and derived UV/chloramine processes have attracted increasing attention due to the production of highly reactive radicals (e.g., hydroxyl radical, reactive chlorine species, and reactive nitrogen species) and also because they can provide long-lasting disinfection. In this review, the main reaction pathways of radicals formed during the UV/chlor (am)ine process are proposed. The degradation efficiency, influencing factors, generation of disinfection by-products (DBPs), and changes in toxicity that occur during antibiotic degradation by UV/chlor (am)ine are reviewed. Based on the statistics and analysis of published results, the effects caused by energy consumption, defined as electrical energy per order (EE/O), increase in the following order: UV/chlorine < UV/peroxydisulfate (PDS)< UV/H₂O₂ < UV/persulfate (PS) < 265 nm and 285 nm UV-LED/chlorine (EE/O). Some inherent problems that affect the UV/chlor (am)ine processes and prospects for future research are proposed. The use of UV/chlor (am)ine AOPs is a rich field of research and has promising future applications, and this review provides a theoretical basis for that.
显示更多 [+] 显示较少 [-]Effects of a soil collembolan on the growth and metal uptake of a hyperaccumulator: Modification of root morphology and the expression of plant defense genes 全文
2022
Pu, Liming | Li, Zhu | Jia, Mingyun | Ke, Xin | Liu, Hongyan | Christie, Peter | Wu, Longhua
Soil collembolans live in close proximity to plant roots and may have a role in the phytoextraction of potentially toxic metals from contaminated soils but the underlying mechanisms remain poorly investigated. We hypothesize that soil collembolans may change the root morphology of hyperaccumulators by regulating plant physiological characteristics. Here, a pot experiment was conducted in which a cadmium (Cd) and zinc (Zn) hyperaccumulator (Sedum plumbizincicola) was grown with or without a collembolan (Folsomia candida), and plant transcriptome and hormones as well as the root characteristics of S. plumbizincicola were analyzed. F. candida promoted the growth and Cd/Zn uptake of S. plumbizincicola, the root and shoot biomass increasing by 53.3 and 34.4%, and the uptake of Cd and Zn in roots increased by 83.2 and 65.4%, respectively. Plant root morphology, total root length, root tip number and lateral root number increased significantly by 40.7, 37.2 and 33.8%, respectively, with the addition of F. candida. Transcriptome analysis reveals that the expression levels of defense-related genes in S. plumbizincicola were significantly up-regulated. In addition, the defensive plant hormones, i.e. salicylic acid in the roots, increased significantly by 338%. These results suggest that the plant in defense of the action of F. candida regulated the expression of the corresponding genes and increased the defensive plant hormones, thus modifying root morphology and plant performance. Overall, this study highlights the importance of the regulation by collembolans of plant growth and metal uptake by interaction with hyperaccumulator roots.
显示更多 [+] 显示较少 [-]