细化搜索
结果 3431-3440 的 5,152
Effect of amendments on contaminated soil of multiple heavy metals and accumulation of heavy metals in plants 全文
2018
Wang, Renyuan | Shafi, Mian M. | Ma, Jiawei | Zhong, Bin | Guo, Jia | Hu, Xiaowei | Xu, Weijie | Yang, Yun | Ruan, Zhongqiang | Wang, Ying | Ye, Zhengqian | Liu, Dan
The contamination of soil with heavy metals is a severe problem due to adverse impact of heavy metals on environmental safety and human health. It is essential to remediate soil contaminated with heavy metals. This study has evaluated the effects of pine biochar, kaolin, and triple super phosphate (TSP) on multiple heavy metals (Ni, Zn, Cu, and Cd) in contaminated soil and accumulation of heavy metals in plants. The amendments can reduce availability of heavy metals in soil by increasing pH, adsorption, complexation, or co-precipitation. Different amendments have variable effects on accumulation of heavy metals in plants and in soil due to its diverse mechanism of stability. The results showed that application of triple super phosphate (TSP) has significant reduced soil Cd exchangeable (EXC) fraction from 58.59 to 21.30%. Bound to carbonates (CAR) fraction decreased from 9.84 to 5.11%, and bound to Fe-Mn oxides (OX) fraction increased from 29.61 to 69.86%. The triple super phosphate (TSP) has the ability to stabilize Cu and especially Cd. However, triple super phosphate (TSP) has enhanced ecological risk of Zn and Ni. Application of pine biochar has significantly enhanced soil pH. The kaolin has significantly reduced EXC fraction of Cd and increased OX fraction of Cu. The amendments and heavy metals have not caused significant effect on SPAD value of Buxus microphylla Siebold & Zucc (B. microphylla). The triple super phosphate (TSP) has significant decreased biomass of B. microphylla and bamboo-williow (Salix sp.) by 24.91 and 57.43%, respectively. Pine biochar and kaolin have increased the accumulation of Zn and Cd in plants. It is concluded that triple super phosphate (TSP) was effective in remediation of Cd and kaolin was effective in remediation of Cd and Cu. Pine biochar was effective in remediation of Cd, Cu, and Zn.
显示更多 [+] 显示较少 [-]Toxicological effects of Sphaeranthus indicus Linn. (Asteraceae) leaf essential oil against human disease vectors, Culex quinquefasciatus Say and Aedes aegypti Linn., and impacts on a beneficial mosquito predator 全文
2018
Chellappandian, Muthiah | Thanigaivel, Annamalai | Vasantha-Srinivasan, Prabhakaran | Edwin, Edward-Sam | Ponsankar, Athirstam | Selin-Rani, Selvaraj | Kalaivani, Kandaswamy | Senthil-Nathan, Sengottayan | Benelli, Giovanni
Use of environmentally friendly, decomposable natural products for effective vector control has gained considerable momentum in modern society. In this study, essential oil of Sphaeranthus indicus (Si-EO) was extracted and further phytochemical screening revealed fourteen compounds with prominent peak area percentage of 24.9 and 22.54% in 3,5-di-tert-butyl-4-hydroxybenzaldehyde and benzene,2-(1,1-dimethylethyl)-1,4-dimethoxy, respectively. The Si-EO was further evaluated for their larvicidal response against Culex quinquefasciatus and Aedes aegypti at different dosages (62.5, 125, 250 and 500 ppm). The Si-EO displayed prominent larvicidal activity at higher concentration (500 ppm) against both species of mosquitoes. The LC₅₀ and LC₉₀ values of oils were observed at 130 and 350 ppm against C. quinquefasciatus larvae and at 140 and 350 ppm against A. aegypti larvae, respectively. Repellent bioassay established higher protection rate at 200 ppm up to 120 min against both the mosquitoes. However, adulticidal response displayed higher mortality rate only at 700 and 800 ppm against C. quinquefasciatus and A. aegypti, respectively. Toxicological screening against mosquito predator Toxorhynchites splendens revealed that the Si-EO was harmless even at the concentration of 1500 ppm. Overall, these results suggest that the Si-EO plays a significant role as a new bio-rational product against ecological burden mosquito vectors which provides an eco-friendly alternative to synthetic pesticides.
显示更多 [+] 显示较少 [-]The environmental pollutant BDE-209 regulates NO/cGMP signaling through activation of NMDA receptors in neurons 全文
2018
Chen, Jingsi | Li, Xiuying | Li, Xiaomei | Chen, Dunjin
The common flame retardant decabrominated diphenyl ether (BDE-209) is a persistent organic pollutant. Epidemiological studies have revealed that prenatal or postnatal exposure to BDE-209 can result in delayed cognitive development, and BDE-209 has been shown to be toxic to cultured neurons with maturation interference effects. However, its neurotoxic mechanism remains unclear. Nitric oxide/cyclic guanosine monophosphate (NO/cGMP) signaling plays an important role in regulating neuronal maturation. We examined the influence of BDE-209 (100, 200, and 400 nM) on NO production and cGMP levels signaling in rodent neurons in vitro, with or without pretreatment N-methyl-D-aspartate (NMDA) receptor antagonism. We found that nanomolar concentrations of BDE-209 affected levels of the second messengers NO and cGMP, and that these effects could be blocked by NMDA receptor antagonism. Moreover, BDE-209 activation of NMDA receptors inhibited the expression of phosphodiesterases (PDEs), which modulate intracellular cGMP levels, and increased the Bcl-2/Bax ratio, favoring apoptosis induction. Our studies implicate the NMDA-NO/cGMP pathway in the pathogenic mechanism through which BDE-209 induces neurotoxicity.
显示更多 [+] 显示较少 [-]Characterization of PM2.5 and identification of transported secondary and biomass burning contribution in Seoul, Korea 全文
2018
Kim, Yumi | Seo, Jihoon | Kim, Jin Young | Lee, Ji Yi | Kim, Hwajin | Kim, Bong Mann
The chemical and seasonal characteristics of fine particulates in Seoul, Korea, were investigated based on 24-h integrated PM₂.₅ measurements made over four 1-month periods in each season between October 2012 and September 2013. The four-season average concentration of PM₂.₅ was 37 μg m⁻³, and the major chemical components were secondary inorganic aerosol (SIA) species of sulfate, nitrate, and ammonium (49%), followed by organic matter (34%). The mass concentration and most of the chemical components of PM₂.₅ showed clear seasonal variation, with a winter-high and summer-low pattern. The winter-to-summer sulfate ratio and the winter organic carbon (OC)-to-elemental carbon (EC) ratio were unusually high compared with those in previous studies. Strong correlations of both the sulfate level and the sulfur oxidation ratio with relative humidity, and between water-soluble OC (WSOC) and SIA in winter, suggest the importance of aqueous phase chemistry for secondary aerosols. A strong correlation between non-sea salt sulfate and Na⁺ levels, a high Cl⁻/Na⁺ ratio, and an unusual positive correlation between the nitrogen oxidation ratio and temperature during the winter indicate the influence of transported secondary emission sources from upwind urban areas and from China across the Yellow Sea. Despite the absence of local forest fires and the regulation of wood burning, a high levoglucosan concentration and its correlations with OC and WSOC indicate that Seoul was affected by biomass burning sources in the winter. The unusually high water-insoluble OC (WIOC)-to-EC ratio in winter implies additional transported combustion sources of WIOC. The strong correlation between WIOC and levoglucosan suggests the likely influence of transported biomass burning sources on the high WIOC/EC ratio during the winter.
显示更多 [+] 显示较少 [-]The effect of simulated acid rain on the stabilization of cadmium in contaminated agricultural soils treated with stabilizing agents 全文
2018
Zhu, Hao | Wu, Chunfa | Wang, Jun | Zhang, Xumei
Stabilization technology is one of widely used remediation technologies for cadmium (Cd)-contaminated agricultural soils, but stabilized Cd in soil may be activated again when external conditions such as acid rain occurred. Therefore, it is necessary to study the effect of acid rain on the performance of different stabilizing agents on Cd-polluted agriculture soils. In this study, Cd-contaminated soils were treated with mono-calcium phosphate (MCP), mono-ammonium phosphate (MAP), and artificial zeolite (AZ) respectively and incubated 3 months. These treatments were followed by two types of simulated acid rain (sulfuric acid rain and mixed acid rain) with three levels of acidity (pH = 3.0, 4.0, and 5.6). The chemical forms of Cd in the soils were determined by Tessier’s sequential extraction procedure, and the leaching toxicities of Cd in the soils were assessed by toxicity characteristic leaching procedure (TCLP). The results show that the three stabilizing agents could decrease the mobility of Cd in soil to some degree with or without simulated acid rain (SAR) treatment. The stabilization performances followed the order of AZ < MAP < MCP. Acid rain soaking promoted the activation of Cd in stabilized soil, and both anion composition and pH of acid rain were two important factors that influenced the stabilization effect of Cd.
显示更多 [+] 显示较少 [-]Production of mycotoxins by filamentous fungi in untreated surface water 全文
2018
Oliveira, Beatriz R. | Mata, Ana T. | Ferreira, João P. | Barreto Crespo, Maria T. | Pereira, Vanessa J. | Bronze, Maria R.
Several research studies reported that mycotoxins and other metabolites can be produced by fungi in certain matrices such as food. In recent years, attention has been drawn to the wide occurrence and identification of fungi in drinking water sources. Due to the large demand of water for drinking, watering, or food production purposes, it is imperative that further research is conducted to investigate if mycotoxins may be produced in water matrices. This paper describes the results obtained when a validated analytical method was applied to detect and quantify the presence of mycotoxins as a result of fungi inoculation and growth in untreated surface water. Aflatoxins B1 and B2, fumonisin B3, and ochratoxin A were detected at concentrations up to 35 ng/L. These results show that fungi can produce mycotoxins in water matrices in a non-negligible quantity and, as such, attention must be given to the presence of fungi in water.
显示更多 [+] 显示较少 [-]The effect of substrate/inoculum ratio on the kinetics of methane production in swine wastewater anaerobic digestion 全文
2018
Córdoba, Verónica | Fernández, Mónica | Santalla, Estela
Methane production from swine wastewater was evaluated by using sewage sludge as inoculum in three substrate to inoculum ratios (SIRs) named A (1:1), B (3:1) and C (6:1), with the objective to identify the proportion that optimizes the performance of the process. Duplicated batch bioreactors of 1 L capacity under mesophilic conditions were used to carry out the experiment. The highest biogas yield was observed in A treatment (554 ± 75 mL/g volatile solid (VS)). Cumulative methane production decreased from 382 ± 22 to 232 ± 5 mL/g VS when SIR increased from 1:1 to 6:1. The first-order model and the modified Gompertz equation were used to model the experimental cumulative methane yield giving adjustments with coefficients of determination of 96 and 99% respectively. The effect of the SIR was analysed based on the kinetic parameters of the Gompertz equation, which are methane production potential, maximum methane production rate and lag-phase time. The best performance in terms of the kinetic parameters was obtained for treatment A; however, treatment B could still ensure a stable process. The use of higher inoculum concentration generated 463.1% higher methane production rate and required 77.3% shorter adaptation time (lag phase) in the SIR range studied. When higher SIR was used (e.g. 14:1, previous work), it could be observed that the Gompertz equation also adjusted adequately the experimental data (R ² > 0.99) although the lag-phase time did not remain in a linear relationship with SIR but exponentially above SIR = 6:1. These results demonstrated that when a low amount of inoculum was used, the adaptation time of microorganisms resulted much higher than expected delaying the methane production and extending the time needed to achieve adequate performance of the process.
显示更多 [+] 显示较少 [-]Utilization of dye-loaded activated carbon as a potential alternative fuel source: a feasibility study through calorific and thermo-gravimetric analysis 全文
2018
Sriram, Aswin | Swaminathan, Ganapathiraman
The disodium salt of Rose Bengal [4, 5, 6, 7-tetrachloro-2′, 4′, 5′, 7′-tetraiodofluorescein] commonly finds application in medical procedures and its removal from aqueous solution is difficult owing to its high molecular weight of 1017.67 g/mol. Activated carbon was prepared from Prosopis juliflora and immobilized into sodium alginate beads and doped with aniline for enhanced adsorption of Rose Bengal. The effect of initial dye concentration, beads’ dosage, contact time, and the temperature over the adsorption of Rose Bengal dye were studied. The optimum conditions derived for maximum dye uptake capacity were 4 mg/L of initial dye concentration, contact time of 60 min with the adsorbent dosage of 0.2 g, and temperature of 303 K at neutral pH. The equilibrium data were found to be best fitted for Langmuir −1 model, whereas the kinetics were interpreted through Ho-Mckay’s pseudo-second-order equation. The adsorbents were subjected to thermo-gravimetric studies to determine the activation energy under a heating rate of 20 °C/min. The activation energy was computed using Broido’s plot and was found to be 35.21 ± 0.84 kJ/mol for the activated carbon, and 16.77 ± 2.19 kJ/mol for the dye-adsorbed beads. The heat capacity was determined through differential scanning calorimetry and was calculated to be 19.41 J/g °C for activated carbon and 39.43 J/g °C for beads post-adsorption of Rose Bengal dye.
显示更多 [+] 显示较少 [-]Deciphering the ionic homeostasis, oxidative stress, apoptosis, and autophagy in chicken intestine under copper(II) stress 全文
2018
Zhao, Hongjing | Wang, Yu | Shao, Yizhi | Liu, Juanjuan | Liu, Yanhua | Xing, Mingwei
As cofactors of several enzymatic, copper (Cu) participates in many essential metabolic processes. Also, as a heavy metal, it exhibits highly toxic to the organism if excessive. This study endeavored to detect the pathophysiological changes in the jejunum of chickens, which were insulted by CuSO₄ (300 mg/kg diet) for 90 days. Results showed metabolic disorders of trace elements evidenced by their significant downregulations (Na, Al, Li, B, Cr, Ni, Sn, Sb, Ba) and upregulations (Cu, Si, As, Cd, Se, and Tl) in 90 days. Simultaneously, increased TdT-mediated dUTP nick end labeling (TUNEL)-positive nuclei and distinct ultrastructural apoptotic features were observed. Meanwhile, in 30, 60, and 90 days, indicators of oxidative stress, apoptosis, autophagy, and mitochondrial dynamic were detected to uncover the molecular mechanism behind these pathological changes. The results showed that suppressed antioxidant ability was companied by increased mRNA and protein levels of proapoptosis and mitochondrial fission activating genes in the Cu group compared with chickens in the control group (P < 0.05). Moreover, the markers of autophagy long-chain 3 (LC3-II/LC3-I), Bcl-2-interacting protein (beclin-1), and autophagy-related gene (ATG4B and ATG5) displayed a time-dependent increase during 30, 60, and 90 days. We conjectured that subchronic copper poisoning, under the background of redistribution of trace elements, induced oxidative stress and cascaded apoptosis, autophagy, and mitochondrial disorder, which contributed to jejunotoxicity in chicken. Collectively, our study provides a basic assessment of subchronic Cu exposure on poultry, voicing concerns about copper pollution by anthropogenic activities.
显示更多 [+] 显示较少 [-]Screening of heavy metal containing waste types for use as raw material in Arctic clay-based bricks 全文
2018
Belmonte, Louise Josefine | Ottosen, Lisbeth M. | Kirkelund, Gunvor Marie | Jensen, Pernille Erland | Vestbø, Andreas Peter
In the vulnerable Arctic environment, the impact of especially hazardous wastes can have severe consequences and the reduction and safe handling of these waste types are therefore an important issue. In this study, two groups of heavy metal containing particulate waste materials, municipal solid waste incineration (MSWI) fly and bottom ashes and mine tailings (i.e., residues from the mineral resource industry) from Greenland were screened in order to determine their suitability as secondary resources in clay-based brick production. Small clay discs, containing 20 or 40% of the different particulate waste materials, were fired and material properties and heavy metal leaching tests were conducted before and after firing. Remediation techniques (washing in distilled water and electrodialytical treatment) applied to the fly ash reduced leaching before firing. The mine tailings and bottom ash brick discs obtained satisfactory densities (1669–2007 kg/m³) and open porosities (27.9–39.9%). In contrast, the fly ash brick discs had low densities (1313–1578 kg/m³) and high open porosities (42.1–51. %). However, leaching tests on crushed brick discs revealed that heavy metals generally became more available after firing for all the investigated materials and that further optimisation is therefore necessary prior to incorporation in bricks.
显示更多 [+] 显示较少 [-]