细化搜索
结果 361-370 的 3,638
Impact of bisphenol A (BPA) on early embryo development in the marine mussel Mytilus galloprovincialis: Effects on gene transcription 全文
2016
Balbi, Teresa | Franzellitti, Silvia | Fabbri, Rita | Montagna, Michele | Fabbri, Elena | Canesi, Laura
Bisphenol A (BPA), a monomer used in plastic manufacturing, is weakly estrogenic and a potential endocrine disruptor in mammals. Although it degrades quickly, it is pseudo-persistent in the environment because of continual inputs, with reported concentrations in aquatic environments between 0.0005 and 12 μg/L. BPA represents a potential concern for aquatic ecosystems, as shown by its reproductive and developmental effects in aquatic vertebrates.In invertebrates, endocrine-related effects of BPA were observed in different species and experimental conditions, with often conflicting results, indicating that the sensitivity to this compound can vary considerably among related taxa. In the marine mussel Mytilus galloprovincialis BPA was recently shown to affect early development at environmental concentrations. In this work, the possible effects of BPA on mussel embryos were investigated at the molecular level by evaluating transcription of 13 genes, selected on the basis of their biological functions in adult mussels. Gene expression was first evaluated in trocophorae and D-veligers (24 and 48 h post fertilization) grown in physiological conditions, in comparison with unfertilized eggs. Basal expressions showed a general up-regulation during development, with distinct transcript levels in trocophorae and D-veligers. Exposure of fertilized eggs to BPA (10 μg/L) induced a general upregulation at 24 h pf, followed by down regulation at 48 h pf. Mytilus Estrogen Receptors, serotonin receptor and genes involved in biomineralization (Carbonic Anydrase and Extrapallial Protein) were the most affected by BPA exposure. At 48 h pf, changes in gene expression were associated with irregularities in shell formation, as shown by scanning electron microscopy (SEM), indicating that the formation of the first shelled embryo, a key step in mussel development, represents a sensitive target for BPA. Similar results were obtained with the natural estrogen 17β-estradiol. The results demonstrate that BPA and E2 can affect Mytilus early development through dysregulation of gene transcription.
显示更多 [+] 显示较少 [-]Application of plow-tillage as an innovative technique for eliminating overwintering cyanobacteria in eutrophic lake sediments 全文
2016
Zhou, Qi-Lin | Liu, Cheng | Fan, Chengxin
Surface sediment in eutrophic lakes is both a destination and a habitat for overwintering cyanobacteria. The resuspension and recovery of viable, overwintering cyanobacteria from the surface sediment during warm spring weather is usually the primary stage of cyanobacterial blooms (CBs) in shallow eutrophic lakes. Therefore, the elimination of overwintering cyanobacteria in sediment is vital to control CBs. In the present study, sediment plow-tillage (PT) was introduced as an innovative technique for eliminating overwintering cyanobacteria in sediments from Lake Chaohu. Four depths of PT (2, 5, 10, and 15 cm) were tested during the 42-day experiment. The results showed that rapid cell death during the first 0–7 d after PT was accompanied by high oxygen uptake rates. The viable cells in deeper sediment died more quickly and at a higher rate after PT. A PT depth of >10 cm effectively eliminated viable cyanobacteria (with a removal rate of 82.8%) from the sediment and prevented their resuspension. The activity of the viable cyanobacteria also decreased quickly as cyanobacteria were eliminated. It appears that the dark, anoxic environment of the deeper sediment after PT was responsible for the elimination of viable cells. Although high release rates of nitrogen and phosphorus were found to accompany the dying and decomposition of cyanobacteria during days 0–7 of the experiment, greater depth of PT was found to decrease nutrient concentrations in the overlying water. In conclusion, we recommend sediment PT as a new technique for eliminating overwintering algae in sediments. However, the release of nutrients from the sediment and the in situ control of CBs in lakes after PT should be further studied.
显示更多 [+] 显示较少 [-]Conversion of Fe-rich waste sludge into nano-flake Fe-SC hybrid Fenton-like catalyst for degradation of AOII 全文
2016
Kong, Lingjun | Zhu, Yuting | Liu, Mingxiang | Chang, Xiangyang | Xiong, Ya | Chen, Diyun
Permanently increasing in the amount of sludge resulted in the serious environment burden. This work reports a novel carbothermal process for converting the Fe-rich waste sludge into cleaner nano-flake Fenton-like catalyst to relieve the crisis. The transformation of Fe species at different carbothermal temperature was evaluated by XRD analysis. SEM and XPS analyses were involved to characterize the morphology and chemical bonds of the catalysts. Results shown that the resulted catalyst carbonized at 800 °C (Fe-SC-800) was composed of Fe0 and Fe3O4, performing nano-flake-like structure. The Fe-SC-800 has the highest catalytic activity in degradation of AOII in C0 = 200 mg/L. The efficiency achieves at 98% within 30 min at neutral pH, which is ascribed to the hydroxyl radical oxidation. Moreover, no iron is leached and the Fe-SC-800 could be recycled for three times at least. Thus, the Fe rich sludge could be reutilized as a valuable source for eco-friendly catalyst production, constituting an ecological way to manage these sludge wastes and eliminate the sludge and organic pollution to environment.
显示更多 [+] 显示较少 [-]In situ ingestion of microfibres by meiofauna from sandy beaches 全文
2016
Gusmão, Felipe | Domenico, Maikon Di | Amaral, A. Cecília Z. | Martínez, Alejandro | Gonzalez, Brett C. | Worsaae, Katrine | Ivar do Sul, Juliana A. | Lana, Paulo da Cunha
Microfibres are widespread contaminants in marine environments across the globe. Detecting in situ ingestion of microfibres by small marine organisms is necessary to understand their potential accumulation in marine food webs and their role in marine pollution. We have examined the gut contents of meiofauna from six sandy beaches in the Atlantic Ocean and the Mediterranean. Out of twenty taxonomic groups, three species of the common sandy beach annelid Saccocirrus displayed in situ ingestion of microfibres in all sites. Laboratory observations showed that species of Saccocirrus are able to egest microfibres with no obvious physical injury. We suggest that their non-selective microphagous suspension-feeding behaviour makes Saccocirrus more prone to ingest microfibres. Although microfibres are rapidly egested with no apparent harm, there is still the potential for trophic transfer into marine food webs through predation of Saccocirrus.
显示更多 [+] 显示较少 [-]Chronic toxicity of azo and anthracenedione dyes to embryo-larval fathead minnow 全文
2016
Parrott, Joanne L. | Bartlett, Adrienne J. | Balakrishnan, Vimal K.
The toxicity of selected azo and anthracenedione dyes was studied using chronic exposures of embryo-larval fathead minnows (Pimephales promelas). Newly fertilized fathead minnow embryos were exposed through the egg stage, past hatching, through the larval stage (until 14 days post-hatch), with dye solutions renewed daily. The anthracenedione dyes Acid Blue 80 (AB80) and Acid Blue 129 (AB129) caused no effects in larval fish at the highest measured concentrations tested of 7700 and 6700 μg/L, respectively. Both azo dyes Disperse Yellow 7 (DY7) and Sudan Red G (SRG) decreased survival of larval fish, with LC50s (based on measured concentrations of dyes in fish exposure water) of 25.4 μg/L for DY7 and 16.7 μg/L for SRG. Exposure to both azo dyes caused a delayed response, with larval fish succumbing 4–10 days after hatch. If the exposures were ended at the embryo stage or just after hatch, the potency of these two dyes would be greatly underestimated. Concentrations of dyes that we measured entering the Canadian environment were much lower than those that affected larval fish survival in the current tests. In a total of 162 samples of different municipal wastewater effluents from across Canada assessed for these dyes, all were below detection limits. The similarities of the structures and larval fish responses for the two azo and two anthracenedione dyes in this study support the use of read-across data for risk assessment of these classes of compounds.
显示更多 [+] 显示较少 [-]Nutrients versus emerging contaminants–Or a dynamic match between subsidy and stress effects on stream biofilms 全文
2016
Aristi, I. | Casellas, M. | Elosegi, A. | Insa, S. | Petrovic, M. | Sabater, S. | Acuña, V.
Freshwater ecosystems are threatened by multiple anthropogenic stressors, which might be differentiated into two types: those that reduce biological activity at all concentrations (toxic contaminants), and those that subsidize biological activity at low concentrations and reduce it at high concentrations (assimilable contaminants). When occurring in mixtures, these contaminants can have either antagonistic, neutral or synergistic effects; but little is known on their joint effects. We assessed the interaction effects of a mixture of assimilable and toxic contaminants on stream biofilms in a manipulative experiment using artificial streams, and following a factorial design with three nutrient levels (low, medium or high) and either presence or absence of a mixture of emerging contaminants (ciprofloxacin, erythromycin, diclofenac, methylparaben, and sulfamethoxazole). We measured biofilm biomass, basal fluorescence, gross primary production and community respiration. Our initial hypotheses were that biofilm biomass and activity would: increase with medium nutrient concentrations (subsidy effect), but decrease with high nutrient concentrations (stress effect) (i); decrease with emerging contaminants, with the minimum decrease at medium nutrient concentrations (antagonistic interaction between nutrients subsidy and stress by emerging contaminants) and the maximum decrease at high nutrient concentrations (synergistic interaction between nutrients and emerging contaminants stress) (ii). All the measured variables responded linearly to the available nutrients, with no toxic effect at high nutrient concentrations. Emerging contaminants only caused weak toxic effects in some of the measured variables, and only after 3–4 weeks of exposure. Therefore, only antagonistic interactions were observed between nutrients and emerging contaminants, as medium and high nutrient concentrations partly compensated the harmful effects of emerging contaminants during the first weeks of the experiment. Our results show that contaminants with a subsidy effect can alleviate the effects of toxic contaminants, and that long-term experiments are required to detect stress effects of emerging contaminants at environmentally relevant concentrations.
显示更多 [+] 显示较少 [-]Physicochemical transformation and algal toxicity of engineered nanoparticles in surface water samples 全文
2016
Zhang, Luqing | Li, Jingyi | Yang, Kun | Liu, Jingfu | Lin, Daohui
Most studies on the behavior and toxicity of engineered nanoparticles (NPs) have been conducted in artificial water with well-controlled conditions, which are dramatically different from natural waters with complex compositions. To better understand the fate and toxicity of NPs in the natural water environment, physicochemical transformations of four NPs (TiO2, ZnO, Ag, and carbon nanotubes (CNTs)) and their toxicities towards a unicellular green alga (Chlorella pyrenoidosa) in four fresh water and one seawater sample were investigated. Results indicated that water chemistry had profound effects on aggregation, dissolution, and algal toxicity of the NPs. The strongest homoaggregation of the NPs was associated with the highest ionic strength, but no obvious correlation was observed between the homoaggregation of NPs and pH or dissolved organic matter content of the water samples. The greatest dissolution of ZnO NPs also occurred in seawater with the highest ionic strength, while the dissolution of Ag NPs varied differently from ZnO NPs. The released Zn²⁺ and especially Ag⁺ mainly accounted for the algal toxicity of ZnO and Ag NPs, respectively. The NP-cell heteroagglomeration occurred generally for CNTs and Ag NPs, which contributed to the observed nanotoxicity. However, there was no significant correlation between the observed nanotoxicity and the type of NP or the water chemistry. It was thus concluded that the physicochemical transformations and algal toxicities of NPs in the natural water samples were caused by the combined effects of complex water quality parameters rather than any single influencing factor alone. These results will increase our knowledge on the fate and effects of NPs in the aquatic environment.
显示更多 [+] 显示较少 [-]Metallic nickel nanoparticles and their effect on the embryonic development of the sea urchin Paracentrotus lividus 全文
2016
Kanold, Julia Maxi | Wang, Jiabin | Brümmer, Franz | Šiller, Lidija
The presence of nanoparticles in many industrial applications and daily products is making it nowadays crucial to assess their impact when exposed to the environment. Metallic nickel nanoparticles (Ni NPs) are of high industrial interest due to their ability to catalyze the reversible hydration of CO2 to carbonic acid at ambient conditions. We characterized metallic Ni NPs by XRD, HRTEM and EDS and determined the solubility of free nickel ions from 3 mg/L metallic Ni NPs in seawater by ICP-MS over 96 h, which was below 3%. Further, embryonic development of the sea urchin Paracentrotus lividus was investigated for 48 h in the presence of metallic Ni NPs (0.03 mg/L to 3 mg/L), but no lethal effects were observed. However, 3 mg/L metallic Ni NPs caused a size reduction similar to 1.2 mg/L NiCl2*6 H2O. The obtained results contribute to current studies on metallic Ni NPs and point to their consequences for the marine ecosystem.
显示更多 [+] 显示较少 [-]The effect of silicon on iron plaque formation and arsenic accumulation in rice genotypes with different radial oxygen loss (ROL) 全文
2016
Wu, Chuan | Zou, Qi | Xue, Sheng-Guo | Pan, Wei-Song | Huang, Liu | Hartley, William | Mo, Jing-Yu | Wong, Ming-Hung
Rice is one of the major pathways of arsenic (As) exposure in human food chain, threatening over half of the global population. Greenhouse pot experiments were conducted to examine the effects of Si application on iron (Fe) plaque formation, As uptake and rice grain As speciation in indica and hybrid rice genotypes with different radial oxygen loss (ROL) ability. The results demonstrated that Si significantly increased root and grain biomass. Indica genotypes with higher ROL induced greater Fe plaque formation, compared to hybrid genotypes and sequestered more As in Fe plaque. Silicon applications significantly increased Fe concentrations in iron plaque of different genotypes, but it decreased As concentrations in the roots, straws and husks by 28–35%, 15–35% and 32–57% respectively. In addition, it significantly reduced DMA accumulation in rice grains but not inorganic As accumulation. Rice of indica genotypes with higher ROL accumulated lower concentrations of inorganic As in grains than hybrid genotypes with lower ROL.
显示更多 [+] 显示较少 [-]Using in situ bacterial communities to monitor contaminants in river sediments 全文
2016
Xie, Yuwei | Wang, Jizhong | Wu, Yaketon | Ren, Chen | Song, Chao | Yang, Jianghua | Yu, Hongxia | Giesy, John P. | Zhang, Xiaowei
Bacterial communities in sediments of human-impacted rivers are exposed to multiple anthropogenic contaminants and eventually lead to biodiversity lost and ecological functions disable. Nanfei River of Anhui province has been contaminated by pollutants from industrial and/or agricultural sources. This study was conducted to investigate the structure of in situ sediment bacterial communities in Nanfei River and to examine the correlation between the different taxonomic components and contaminant concentrations. The bacterial communities were dominated by Proteobacteria, Bacteroidetes and Chloroflexi. Both the profiles of environmental predictors and the composition of microbial communities differed among agriculture, industrial and confluence regions. There were significant associations between bacterial community phylogenies and the measured contaminants in the sediments. Nutrients (TN and TP) and two metals (Cd and Zn) were negatively correlated with the essential “core” of the bacterial interaction network (Betaproteobacteria and Deltaproteobacteria). Metals (Fe, Ni and Zn) and nutrients (TN and TP) had higher impact on bacterial community compositions than PAHs, OPs and PRTs according to the correlation and network analyses. Furthermore, several sensitive candidate genera were identified as potential bioindicators to monitor key contaminants by species contaminant correlation analysis. Overall, in situ bacterial communities could provide a useful tool for monitoring and assessing ecological stressors in freshwater sediments.
显示更多 [+] 显示较少 [-]