细化搜索
结果 361-370 的 7,979
Monitoring air quality can help for lakes excessive proliferation of phytoplankton control
2021
Zhang, Chengxiang | Pei, Hongcui | Liu, Cunqi | Wang, Wei | Lei, Guangchun
Previous studies assessing excessive proliferation of phytoplankton (EPP) in lakes are generally based on single investigation and focused on limited environmental factors; meanwhile, less attention has been paid to lakes susceptibility to EPP. Here, we identify the priority of lakes for EPP control in a basin by assessing EPP in multiple lakes and identify the key factors related to lakes’ vulnerability to EPP. Field measurements, as well as multi-source survey data acquisition were conducted for 63 shallow lakes in the middle-lower Yangtze River basin. Resource-use efficiency by phytoplankton (RUE) was then used to represent lake susceptibility to EPP. Generalized linear models were used to assess the relative importance of environmental factors for RUE. We found that most lakes (76.19 %) were not suitable for recreation, due to health concern attributed to irritative or allergenic risk caused by EPP. Phosphorus was the primary limiting nutrient for EPP (74.60 % of lakes) which should be limited to < 0.09 mg/L. The linear model that included latitude, particulate matter 10, and precipitation explained 27.60 % of the variation of RUETP among lakes. In contrast, the linear model that included ozone, Secchi depth, and wind speed explained 19.41 % of the variation of RUETN among lakes. The key factor related to RUETP and RUETN was particulate matter 10 and ozone, respectively, both of which potentially increase RUE or reflect it. Our results suggest that integrating multiple survey datasets is critical for lakes EPP assessment in a basin, while lakes impacted by air pollution are a high priority for EPP control.
显示更多 [+] 显示较少 [-]Bioaccessibility-corrected health risk of heavy metal exposure via shellfish consumption in coastal region of China
2021
Chai, Minwei | Li, Ruili | Gong, Yuan | Shen, Xiaoxue | Yu, Lingyun
A systematic investigation into bioaccessible heavy metals in shellfish Crassostrea ariakensis, Chlamys farreri, and Sinonovacula constricta from coastal cities Shenzhen, Zhoushan, Qingdao, and Dandong was carried out to assess the potential health risk to residents in coastal regions in China. The bioaccessible fractions of heavy metals were (μg‧g⁻¹): Zn (0.63–15.01), Cu (0.10–12.91), Cd (0.01–0.64), As (0.11–0.33), Cr (0.07–0.12), Pb (0.01–0.03). The bioaccessibilities of heavy metals were Cr 61.86%, inorganic As (iAs) 60.44%, Pb 55.74%, Cu 46.83%, Zn 28.16%, and Cd 24.99%. As for child and adult, the bioaccessibility-corrected estimated daily intakes were acceptable and the non-carcinogenic risks posed by heavy metals were not obvious. The carcinogenic risks posed by bioaccessible heavy metals at the fifth percentile were 10-fold higher than the acceptable level (10⁻⁴), with iAs and Cd to be the major contributors, regardless of child or adult. The probabilistic estimation showed the low risk of shellfish consumption, which was verified by higher values of maximum allowable consumption rate and monthly meals at the 95 percentile; while some control of consumption rate and monthly meals was necessary for reducing heavy metal exposure of most shellfish samples, except for the safe consumption of S. constricta for both child and adult in Qingdao and Shenzhen, China.
显示更多 [+] 显示较少 [-]Geochemical signatures and natural background values of rare earth elements in soils of Brazilian Amazon
2021
Ferreira, Matheus da Silva | Fontes, Maurício Paulo Ferreira | Bellato, Carlos Roberto | Marques Neto, José de Oliveira | Lima, Hedinaldo Narciso | Fendorf, Scott
Rare earth elements (REEs) are generally defined as a homogenous group of elements with similar physical-chemical properties, encompassing Y and Sc and the lanthanides elements series. Natural REEs contents in soils depend on the parent material, the soil genesis processes and can be gradually added to the soil by anthropogenic activities. The REEs have been considered emerging pollutants in several countries, so the establishment of regulatory guidelines is necessary to avoid environmental contamination. In Brazil, REE soils data are restricted to some regions, and knowledge about them in the Amazon soils is scarce, although this biome covers more than 40% of the Brazilian territory. Thus, the objectives of this study were to determine the REE content in soils of two hydrographic basins (Solimões and Rio Negro) of the Amazon biome, establish their Quality Reference Values (QRV) and to investigate the existence of enrichment of REEs in urban soils. The ΣREE(Y + Sc) content of Solimões surface samples was 109.28 mg kg⁻¹ and the ΣREE(Y + Sc) content in the subsurface samples was 94.11 mg kg⁻¹. In soils of Rio Negro basin, the ΣREE(Y + Sc) was 43.95 15 mg kg⁻¹ surface samples and 38.40 mg kg⁻¹ in subsurface samples. The ΣREE(Y + Sc) in urban topsoils samples was 38.62 mg kg⁻¹. The REEs contents pattern in three studied areas are influenced in different amplitude by natural soil properties. The REEs content in urban topsoils were slightly higher than the Rio Negro pristine soils, but the ecological risk was low. QRVs recommend for Solimões soils ranged from 0.01 (Lu) to 145.6 mg kg⁻¹ (Ce) and for Rio Negro soils ranged from 0.05 (Lu) to 15.8 mg kg⁻¹ (Ce).
显示更多 [+] 显示较少 [-]Occurrence and abundance of poly- and perfluoroalkyl substances (PFASs) on microplastics (MPs) in Pearl River Estuary (PRE) region: Spatial and temporal variations
2021
Cheng, Yao | Mai, Lei | Lu, Xingwen | Li, Zhe | Guo, Ying | Chen, Da | Wang, Fei
Although the occurrence and distribution of various chemicals on microplastics (MPs) has been widely studied, little was known about the concentrations of poly- and perfluoroalkyl substances (PFASs) on MPs. In this study, MPs from eight rivers draining into Pearl River Estuary (PRE) region were collected and analyzed. Higher concentrations of PFASs on MPs (105–9.07 × 10³ ng g⁻¹) were found in the drain outlets receiving wastewater from most urbanized cities with large population densities. On the other hand, lower concentrations of PFASs on MPs (10.3–227.8 ng g⁻¹) were found in the drain outlets receiving wastewater mostly from agricultural and forested areas. Specially, 8:2 disubstituted polyfluoroalkyl phosphates (8:2 diPAP) was detected with the highest frequency, in 92.5% of the samples. Furthermore, a positive Spearman correlation was found between 6:2 disubstituted polyfluoroalkyl phosphates (6:2 diPAP) and perfluorotetradecanoic acid (PFTeDA) (rₛ = 0.621, p = 0.012), indicating they might share similar sources. PFASs on MPs were found to vary significantly with different seasons. Higher concentrations of PFASs on MPs were found in dry seasons, while lower concentrations were observed in wet seasons. The results of this study should be important for the understanding of PFAS occurrence and distribution on MPs and the partitioning mechanism of PFASs on MPs in estuary systems.
显示更多 [+] 显示较少 [-]Urban mining of obsolete computers by manual dismantling and waste printed circuit boards by chemical leaching and toxicity assessment of its waste residues
2021
Arya, Shashi | Patel, Aneri | Kumar, Sunil | Pau-Loke, Show
Waste residues and acidic effluents (post-processing of E-waste) released into the local surroundings cause perilous environmental threats and potential risks to human health. Only limited research and information are available toward the sustainable management of waste residues generated post resource recovery of E-waste components. In the present study, the manual processing of obsolete computer (keyboard, monitor, CPU, and mouse) and chemical leaching of waste printed circuit boards (WPCBs) (motherboard, hard drive, DVD drive, and power supply) were performed for urban mining. The toxicity characteristics of typical pollutants in the residues of the WPCBs (post chemical leaching) were studied by toxicity characteristics leaching procedure (TCLP) test. Manual dismantling techniques resulted in an efficient urban mining concept with an overall average profit estimation of INR 2513.73/US$ 34.59. The chemical leaching of WPCBs showed a high concentration of metal leaching like Cu (229662 ± 575.3 mg/kg) and Pb (36785.67 ± 13.07 mg/kg) in the motherboard after stripping epoxy coating. The toxicity test revealed that the concentration of Cu (245.746 ± 0.016 mg/l) in the treated waste residue and Cu (430.746 ± 0.0015 mg/l) and Pb (182.09 ± 0.0035 mg/l) in the non-treated waste residue exceeded the threshold limit. The concentrations of other elements As, Cd, Co, Cr, Ag, Mn, Zn, Ni, Fe, Se, and In were within the permissible limit. Hence, the waste residue stands non-hazardous except Cu and Pb. Stripping out the epoxy coating of WPCBs enhances the metal leaching concentrations. The study highlighted that efficient and appropriate E-waste urban mining has immense potential in tracing the waste scrap into secondary resources. This study also emphasized that the final processed waste residue (left unattended or discarded due to lack of appropriate skill and technology) can be taken into consideration and exploited for value-added materials.
显示更多 [+] 显示较少 [-]Vaporization characteristics and aerosol optical properties of electronic cigarettes
2021
Wu, Jinlu | Yang, Muyun | Huang, Jiejie | Gao, Yihan | Li, Dian | Gao, Naiping
The aerosols generated from electronic cigarettes have a significant impact on the human respiratory system. Understanding the vaporization characteristics and aerosol optical properties of electronic cigarettes is important for assessing human exposure to aerosols. An experimental platform was designed and built to simulate the atomization process of electronic cigarette and detect the laser transmissivity of aerosols. The optical properties of single particles and polydispersed particle system for aerosols in the visible wavelength ranges of 400–780 nm were analyzed based on Mie theory. The results show that a higher heating power supplied by coil results in a larger average vaporization rate of e-liquid. Meanwhile, the steady-state transmissivity of the laser beam for aerosols reduces as the heating power increases. Under the same heating power and puffing topography, the total particulate mass (TPM) of aerosols generated by the e-liquid composed of higher vegetable glycerin (VG) content decreases. The scattering efficiency factor of aerosol particle of electronic cigarette increases with an increase in particle size. The volume scattering coefficients of a polydispersed particle system of aerosols decrease as the incident visible wavelengths increase. A higher VG content in e-liquid results in decreased TPM and particle number concentration of aerosols and increased the volume scattering coefficient in the visible wavelength range. It can explain an interesting phenomenon that a lower TPM and a better visual effect brought by the aerosols generated by the e-liquid with a higher VG content could be observed concurrently. The mass indexes (e.g., TPM, average vaporization rate, average mass concentration) and optical indexes (e.g., volume scattering coefficient, laser transmissivity) are suggested to be used for the comprehensive evaluation of relative amounts of aerosols. The results have potential significances for the objective and quantitative assessments of aerosols generated from electronic cigarettes.
显示更多 [+] 显示较少 [-]Vertical migration of microplastics along soil profile under different crop root systems
2021
Li, Haixiao | Lu, Xueqiang | Wang, Shiyu | Zheng, Boyang | Xu, Yan
Microplastics are highly accumulated in soils and supposed to migrate vertically due to water infiltration, fauna activities, and root growth. In this study, the vertical migration of microplastics along soil profile under three crop roots (corn, soybean, and ryegrass) was analyzed by a laboratory-scale incubation experiment. When microplastics were initially distributed in the surface layer, crop roots showed little effects on the vertical migration of microplastics. But in terms of homogenous microplastic distribution along soil profile, corn roots could contribute to the upward movement of microplastics in the middle layers (7–12 cm). It could be related to more pores and fissures created by primary and secondary corn roots and buoyancy effects once the pores and fissures were filled with water. Additionally, a significant positive correlation between microplastic numbers and tertiary roots of ryegrass has been observed and indicated the microplastic retention ability of fine crop roots. According to the results, in contrast to the downward microplastic migration caused by water infiltration and soil fauna activities, crop roots tended to move microplastics upwards or maintain them in soil layers.
显示更多 [+] 显示较少 [-]Foliar-applied polystyrene nanoplastics (PSNPs) reduce the growth and nutritional quality of lettuce (Lactuca sativa L.)
2021
Lian, Jiapan | Liu, Weitao | Meng, Lingzuo | Wu, Jiani | Zhao, Lei | Zeb, Aurang | Sun, Yuebing
Currently, there is a lack of information about the influence of foliar-applied nanoplastics on crop growth and nutritional quality. To fill the knowledge gap, soil-grown lettuces (Lactuca sativa L.) were foliar-exposed to polystyrene nanoplastics (PSNPs) at 0, 0.1 and 1 mg/L for one month. Foliar exposure to PSNPs significantly decreased the dry weight, height, and leaf area of lettuce by 14.3%–27.3%, 24.2%–27.3%, and 12.7%–19.2%, respectively, compared with the control. Similarly, plant pigment content (chlorophyll a, b and carotenoid) was considerably reduced (9.1%, 8.7%, 12.5%) at 1 mg/L PSNPs. However, the significant increase in electrolyte leakage rate (18.6%–25.5%) and the decrease in total antioxidant capacity (12.4%–26%) were the key indicators of oxidative stress in lettuce leaves, demonstrating the phytotoxicity of PSNPs by foliar exposure. In addition, the remarkable reduction in micronutrients and essential amino acids demonstrated a decrease in nutritional quality of lettuce caused by PSNPs. Besides, SEM and TEM analysis indicated the possible absorption of PSNPs through leaves stoma and the translocation downwards to plant roots. This study provides new information about the interaction of airborne NPs with plants. It also warns against atmospheric NPs pollution that the adverse effects of airborne NPs on crop production and food quality should be assessed as a matter of urgency.
显示更多 [+] 显示较少 [-]Predictions and mitigation strategies of PM2.5 concentration in the Yangtze River Delta of China based on a novel nonlinear seasonal grey model
2021
Zhou, Weijie | Wu, Xiaoli | Ding, Song | Ji, Xiaoli | Pan, Weiqiang
High delicate particulate matter (PM₂.₅) concentration can seriously reduce air quality, destroy the environment, and even jeopardize human health. Accordingly, accurate prediction for PM₂.₅ plays a vital role in taking precautions against upcoming air ambient pollution incidents. However, due to the disturbance of seasonal and nonlinear characteristics in the raw series, pronounced forecasts are confronted with tremendous handicaps, even though for seasonal grey prediction models in the preceding researches. A novel seasonal nonlinear grey model is initially designed to address such issues by integrating the seasonal adjustment factor, the conventional Weibull Bernoulli grey model, and the cultural algorithm, simultaneously depicting the seasonality and nonlinearity of the original data. Experimental results from PM₂.₅ forecasting of four major cities (Shanghai, Nanjing, Hangzhou, and Hefei) in the YRD validate that the proposed model can obtain more accurate predictive results and stronger robustness, in comparison with grey prediction models (SNGBM(1,1) and SGM(1,1)), conventional econometric technology (SARIMA), and machine learning methods (LSSVM and BPNN) by employing accuracy levels. Finally, the future PM₂.₅ concentration is forecasted from 2020 to 2022 using the proposed model, which provides early warning information for policy-makers to develop PM₂.₅ alleviation strategies.
显示更多 [+] 显示较少 [-]The impact of COVID-19 lockdowns on surface urban heat island changes and air-quality improvements across 21 major cities in the Middle East
2021
El Kenawy, Ahmed M. | Lopez-Moreno, Juan I. | McCabe, Matthew F. | Domínguez-Castro, Fernando | Peña-Angulo, Dhais | Gaber, Islam M. | Alqasemi, Abduldaem S. | Al Kindi, Khalifa M. | Al-Awadhi, Talal | Hereher, Mohammed E. | Robaa, Sayed M. | Al Nasiri, Noura | Vicente-Serrano, Sergio M.
This study investigates changes in air quality conditions during the restricted COVID-19 lockdown period in 2020 across 21 metropolitan areas in the Middle East and how these relate to surface urban heat island (SUHI) characteristics. Based on satellite observations of atmospheric gases from Sentinel-5, results indicate significant reductions in the levels of atmospheric pollutants, particularly nitrogen dioxide (NO₂), sulfur dioxide (SO₂), and carbon monoxide (CO). Air quality improved significantly during the middle phases of the lockdown (April and May), especially in small metropolitan cities like Amman, Beirut, and Jeddah, while it was less significant in “mega” cities like Cairo, Tehran, and Istanbul. For example, the concentrations of NO₂ in Amman, Beirut, and Jeddah decreased by −56.6%, −43.4%, and −32.3%, respectively, during April 2020, compared to April 2019. Rather, there was a small decrease in NO₂ levels in megacities like Tehran (−0.9%) and Cairo (−3.1%). Notably, during the lockdown period, there was a decrease in the mean intensity of nighttime SUHI, while the mean intensity of daytime SUHI experienced either an increase or a slight decrease across these locations. Together with the Gulf metropolitans (e.g. Kuwait, Dubai, and Muscat), the megacities (e.g. Tehran, Ankara, and Istanbul) exhibited anomalous increases in the intensity of daytime SUHI, which may exceed 2 °C. Statistical relationships were established to explore the association between changes in the mean intensity and the hotspot area in each metropolitan location during the lockdown. The findings indicate that the mean intensity of SUHI and the spatial extension of hotspot areas within each metropolitan had a statistically significant negative relationship, with Pearson's r values generally exceeding - 0.55, especially for daytime SUHI. This negative dependency was evident for both daytime and nighttime SUHI during all months of the lockdown. Our findings demonstrate that the decrease in primary pollutant levels during the lockdown contributed to the decrease in the intensity of nighttime SUHIs in the Middle East, especially in April and May. Changes in the characteristics of SUHIs during the lockdown period should be interpreted in the context of long-term climate change, rather than just the consequence of restrictive measures. This is simply because short-term air quality improvements were insufficient to generate meaningful changes in the region's urban climate.
显示更多 [+] 显示较少 [-]