细化搜索
结果 401-410 的 684
Study On Spatial Variations of Surface Water Quality Vulnerable Zones in Baitarani River Basin, Odisha, India 全文
2024
Abhijeet Das, J. Jerlin Regin, A. Suhasini and K. Baby Lisa
The stated goal of the research is to investigate the surface water quality of the Baitarani River in Odisha to ascertain its compatibility for various uses. Large, complex datasets generated during the one-year (2021-2022) monitoring program were collected from 13 locations and encompassed 22 parameters. To examine temporal and spatial fluctuations in and to interpret these datasets, MCDMs like TOPSIS and the Entropy-based Water Quality Index (EWQI) were utilized. The physical and chemical outcomes of the current experiment were compared to WHO standards. According to the analysis’s results, turbidity and total coliform (TC) are indicators that have a greater impact on water quality in all locations during both seasons and are directly linked to home and agricultural non-point source pollution. As per EWQI interpretation, 30.77 % of the observations in PRM and POM fall under the poor category. The findings showed how anthropogenic activities have harmed St. 8, 11, 12, and 13 and require effective management. A quantifiable approach was also carried out to decide the efficacy of TOPSIS. Farming attributes, including SAR, % Na, RSC, MR, KI, and PI, were estimated to delineate the agriculturally practicable zones. This work can offer a reference database for the betterment of water quality.
显示更多 [+] 显示较少 [-]Design and Modelling of Urban Stormwater Management and Treatment Infrastructure for Communities in Wuse, Abuja 全文
2024
O. J. Oyebode and A.M. Umar
Effective stormwater management can be used to regulate water quantity and quality for environmental sustainability, flood control, pollution reduction and other advantages of civil engineering infrastructures. Pollution of the environment and contamination of water sources can emanate from improper stormwater management. This study used a small-scale model of rainwater harvesting to analyze the design and model of urban stormwater management and treatment infrastructure for the neighborhoods in Abuja. The water quality of the treated stormwater retrieved has improved as a result of the usage of memory foam, alum, and chlorine to filter out contaminants and pathogens. With the fictitious stormwater treatment model created for this study, average values of the physicochemical parameters were collected from the stormwater discharge after it had been filtered and treated. The use of potash alum has had a variety of effects on the water’s quality. From 697 mg.L-1 to 635 mg.L-1, the total dissolved solids dropped. The DO dropped from 5.87 mg.L-1 to 3.92 mg.L-1 as well. Additionally, the turbidity rose from 4.42 FNU to 4.58 FNU, and the salinity rose from 0.7 PSU to 1.44 PSU, respectively. pH decreases from 19.78 to 15.17 mg.L-1, BOD decreases from 8.35 to 6.51, and COD decreases from 2.55 to 1.9. Calcium hardness has decreased from 287 mg.L-1 to 265.83 mg.L-1. The conductivity increases marginally from 3.24 ms.cm-1 to 3.82 ms.cm-1. The Fe2+ and Zn2+ ions exhibit a little decrease from 0.143 mg.L-1 to 0.055 mg.L-1 and from 0.092 mg.L-1 to 0.045 mg.L-1, respectively. Due to inadequate or nonexistent drainage systems in the many states and villages throughout the country, stormwater run-off management and treatment in Nigeria have been a colossal failure. Effective stormwater management can be sustained by using legal and environmental laws.
显示更多 [+] 显示较少 [-]Iron-loaded activated carbon cloth as CDI electrode material for selective recovery of phosphate 全文
2024
Sharker, Tanzila | Gamaethiralalage, Jayaruwan G. | Qu, Qiyang | Xiao, Xinxin | Dykstra, Jouke E. | de Smet, Louis C.P.M. | Muff, Jens
This study investigated the efficacy of oxidised iron-loaded activated carbon cloth (Fe-ACC) for selective recovery of phosphorous. The capacitive deionisation (CDI) technology was employed, for rapid removal of phosphate, with the aim of reducing the reliance on high alkalinity environment for the regeneration of Fe-ACC electrode. Multiple experimental parameters, including applied potential, pH, and co-existing ions, were studied. Additionally, the CDI system was tested on a real water matrix (Lake Ormstrup, Denmark) to elucidate the electrodes’ performance on selective recovery of phosphate. About 69 ± 10% of the adsorbed phosphate were released at pH 12 via pure chemical desorption, which was ~ 50% higher than that at pH 9. The CDI system successfully demonstrated the selective removal of phosphate from the lake water. It reduced the concentration of phosphate from 1.69 to 0.49 mg/L with a 71% removal efficiency, while the removal percentages of other anions, namely chloride, sulphate, bromide, nitrite, nitrate, and fluoride, were 10%, 7%, 1%, 1.5%, 4%, and 7%, respectively.
显示更多 [+] 显示较少 [-]Exploring long-term retention and reactivation of micropollutant biodegradation capacity 全文
2024
Branco, Rita H.R. | Meulepas, Roel J.W. | Rijnaarts, Huub H.M. | Sutton, Nora B.
The factors limiting micropollutant biodegradation in the environment and how to stimulate this process have often been investigated. However, little information is available on the capacity of microbial communities to retain micropollutant biodegradation capacity in the absence of micropollutants or to reactivate micropollutant biodegradation in systems with fluctuating micropollutant concentrations. This study investigated how a period of 2 months without the addition of micropollutants and other organic carbon affected micropollutant biodegradation by a micropollutant-degrading microbial community. Stimulation of micropollutant biodegradation was performed by adding different types of dissolved organic carbon (DOC)—extracted from natural sources and acetate—increasing 10 × the micropollutant concentration, and inoculating with activated sludge. The results show that the capacity to biodegrade 3 micropollutants was permanently lost. However, the biodegradation activity of 2,4-D, antipyrine, chloridazon, and its metabolites restarted when these micropollutants were re-added to the community. Threshold concentrations similar to those obtained before the period of no substrate addition were achieved, but biodegradation rates were lower for some compounds. Through the addition of high acetate concentrations (108 mg-C/L), gabapentin biodegradation activity was regained, but 2,4-D biodegradation capacity was lost. An increase of bentazon concentration from 50 to 500 µg/L was necessary for biodegradation to be reactivated. These results provide initial insights into the longevity of micropollutant biodegradation capacity in the absence of the substance and strategies for reactivating micropollutant biodegrading communities. Graphical abstract: (Figure presented.)
显示更多 [+] 显示较少 [-]Understanding the differential impacts of two antidepressants on locomotion of freshwater snails (Lymnaea stagnalis) 全文
2024
Raman, Nandini Vasantha | Dubey, Asmita | van Donk, Ellen | von Elert, Eric | Lürling, Miquel | Fernandes, Tânia V. | de Senerpont Domis, Lisette N.
There is growing evidence of negative impacts of antidepressants on behavior of aquatic non-target organisms. Accurate environmental risk assessment requires an understanding of whether antidepressants with similar modes of action have consistent negative impacts. Here, we tested the effect of acute exposure to two antidepressants, fluoxetine and venlafaxine (0–50 µg/L), on the behavior of non-target organism, i.e., freshwater pond snail, Lymnaea stagnalis. As compounds interact with chemical cues in the aquatic ecosystems, we also tested whether the effects altered in the presence of bile extract containing 5α-cyprinol sulfate (5α-CPS), a characterized kairomone of a natural predator, common carp (Cyprinus carpio). Behavior was studied using automated tracking and analysis of various locomotion parameters of L. stagnalis. Our results suggest that there are differences in the effects on locomotion upon exposure to venlafaxine and fluoxetine. We found strong evidence for a non-monotonic dose response on venlafaxine exposure, whereas fluoxetine only showed weak evidence of altered locomotion for a specific concentration. Combined exposure to compounds and 5α-CPS reduced the intensity of effects observed in the absence of 5α-CPS, possibly due to reduced bioavailability of the compounds. The results highlight the need for acknowledging different mechanisms of action among antidepressants while investigating their environmental risks. In addition, our results underline the importance of reporting non-significant effects and acknowledging individual variation in behavior for environmental risk assessment.
显示更多 [+] 显示较少 [-]Enhanced Phenanthrene Biodegradation by Bacillus brevis Using Response Surface Methodology 全文
2024
Kiran Bishnoi, Pushpa Rani and Narsi R. Bishnoi
The current investigation assessed the capability of a well-adapted and enriched bacterial strain known as Bacillus brevis for the biodegradation of phenanthrene. To enhance the removal efficiency of phenanthrene, employed Response Surface Methodology (RSM) in conjunction with a Box-Behnken design (BBD) model. The experiments were designed to explore the impact of pH (6.0 to 9.0), temperature (20 to 40°C), initial phenanthrene concentration (50 and 100 ppm), and incubation time (7 to 21 days) on biodegradation of phenanthrene. The highest level of phenanthrene biodegradation, approximately 55.0%, was achieved by Bacillus brevis when the optimal conditions were met as pH of 7.0, temperature 30oC, and initial phenanthrene concentration (70 ppm) after 21 days of incubation time. This study underscores the significance of employing statistical tools like RSM to enhance the microbial degradation of contaminants.
显示更多 [+] 显示较少 [-]Exploring the Adsorption Efficiency of Local Apricot Seed Shell as a Sustainable Sorbent for Nitrate Ion 全文
2024
Mohd Ishaq, R. C. Chhipa, Anupama Sharma, Gh. Ali and Riyaz-ul Hussain
Locally available apricot seed shell as agro-waste was used for the preparation of adsorbents. The biochar was prepared at 370°C via pyrolysis and 80 mesh particle sizes were modified by 1N HCl. Nitrate adsorption and effect of co-ions from aqueous solution were studied under batch model using apricot seed shell powder (ASSP), apricot seed shell biochar (ASSB), and activated apricot seed shell biochar (AASSB). FTIR and pHPZC measurements were used to characterize the adsorbents. Based on the experimental findings, the optimum conditions follow pH 2, 0.3g dosage, initial concentration of 50 mg.L-1, and contact time of 90 min. The three forms of adsorbent exhibited good adsorption for nitrate. However, the maximum percentage removal of nitrate ions from the aqueous solution followed the order AASSB>ASSB>ASSP. The adsorption kinetic of nitrate ion was best fitted by pseudo 2nd order, and the parameters of adsorption isotherms elucidated favorable and improved sorption. This agro-waste could be used to develop sustainable adsorbents in water and wastewater treatment methods and has great potential to replace commercially available sorbents.
显示更多 [+] 显示较少 [-]Potential Use of Portulaca Plant Species in Removing Estradiol Hormone Pollutants in the Surface Water of Bengawan Solo River 全文
2024
Siti Khoiriyah, Suranto, Prabang Setyono, Evi Gravitiani and Agung Hidayat
Bengawan Solo River water is a source of drinking water and raw materials for the government of Surakarta city, but the water has been mixed with domestic, industrial, and agricultural wastes. The waste contains estradiol-17 derived from urine and feces, both from livestock and humans as well as industries around the sub-watershed Bengawan Solo River. The content of estradiol-17 in the Bengawan Solo sub-watershed is quite high. This study is the first conducted in Bengawan Solo River to look at natural estrogens that are very rarely studied in the environment, which are likely could cause several health effects in humans and wildlife due to their relatively strong estrogenic potential and high levels in wastewater and river water. Therefore, research on the elimination of these compounds using effective, energy-efficient, and low-maintenance technologies for water treatment such as phytoremediation is highly expected. The purposes of this study were to identify estradiol, to measure the estradiol levels through HPLC tests as well as to test the effectiveness of phytoremediation with Portulaca plant as biological agents. The results show that the water of Bengawan Solo River contained estradiol substances ranging from 3.88 ppm to 5.76 ppm. The Portulaca plant species was effective at eliminating estrogenic waste up to 99.89%.
显示更多 [+] 显示较少 [-]Research Insights into Punjab’s Stubble Burning Menace 全文
2024
Ruchi Kohli, Anu Mittal and Amit Mittal
The current investigation endeavors to evaluate the prevalence of stubble burning in India, with a special focus on the state of Punjab. The study emphasizes the enormity of stubble burning by examining farm fire incidents, pollutant emissions, its detrimental impacts. It supports the effective management of crop residue along with proposing alternatives to stubble burning. The article conveys the message that stubble burning can result in deleterious effects on the environment, human health, crop growth, natural ecosystems, visibility, and physical infrastructure. The key solutions lie in education, functional literacy, a heightened awareness of environmental laws, rights and duties, stringent governance, and socially responsible public, promoting adherence to the National Green Tribunal’s guidelines for managing crop residue and enlightening farmers about the ill effects of stubble burning on animal, soil, human health, crop biodiversity, and climate change. The available data of districts of Punjab indicates the recent waning trend in stubble burning, thus heralding a positive indication of environmental preservation. Decreased stubble burning is the reward of untiring government initiatives, support and subsidies, awareness programs, advanced research and technology, and enforcement of stringent regulations combined with recognition of the deleterious environmental impacts of stubble burning. This research article indicates that there is still a need for efforts to be made to eliminate stubble burning altogether.
显示更多 [+] 显示较少 [-]Microbes Breaking Down Plastic: Insights for Sustainable Waste Management 全文
2024
C. J. Patel, R. H. Kansagara, D. V. Modi, N. J. Dudhat, K. H. Sojitra and D. M. Babaria
This research investigates the microbial degradation of low-density polyethylene (LDPE) and high-density polyethylene (HDPE) plastics by Bacillus sp., Proteus sp., Pseudomonas sp., and Salmonella sp. The study employs a systematic approach, isolating microorganisms from plastic-contaminated soil and subjecting them to a series of biochemical tests for identification. The research evaluates the weight loss of LDPE and HDPE over two months, revealing varying degrees of degradation among the bacterial strains. Results suggest a potential greater susceptibility of HDPE to microbial degradation. Scanning Electron Microscopy (SEM) analysis provides high-resolution images of the plastic surface, indicating structural changes and biofilm formation during degradation. The findings highlight the unique enzymatic capabilities of each strain and underscore the significance of SEM in elucidating microbial interactions with plastics. The study prompts discussions on optimization, synergistic effects, and the identification of key enzymes in plastic degradation, emphasizing the importance of microbial strategies for waste management. Overall, this research contributes valuable insights into the potential of bacterial strains for addressing plastic pollution challenges.
显示更多 [+] 显示较少 [-]