细化搜索
结果 411-420 的 4,074
Global topics and novel approaches in the study of air pollution, climate change and forest ecosystems
2016
Sicard, Pierre | Augustaitis, Algirdas | Belyazid, Salim | Calfapietra, Carlo | De Marco, Alessandra | Fenn, Mark | Bytnerowicz, Andrzej | Grulke, Nancy | He, Shang | Matyssek, Rainer | Serengil, Yusuf | Wieser, Gerhard | Paoletti, Elena
Research directions from the 27th conference for Specialists in Air Pollution and Climate Change Effects on Forest Ecosystems (2015) reflect knowledge advancements about (i) Mechanistic bases of tree responses to multiple climate and pollution stressors, in particular the interaction of ozone (O3) with nitrogen (N) deposition and drought; (ii) Linking genetic control with physiological whole-tree activity; (iii) Epigenetic responses to climate change and air pollution; (iv) Embedding individual tree performance into the multi-factorial stand-level interaction network; (v) Interactions of biogenic and anthropogenic volatile compounds (molecular, functional and ecological bases); (vi) Estimating the potential for carbon/pollution mitigation and cost effectiveness of urban and peri-urban forests; (vii) Selection of trees adapted to the urban environment; (viii) Trophic, competitive and host/parasite relationships under changing pollution and climate; (ix) Atmosphere–biosphere–pedosphere interactions as affected by anthropospheric changes; (x) Statistical analyses for epidemiological investigations; (xi) Use of monitoring for the validation of models; (xii) Holistic view for linking the climate, carbon, N and O3 modelling; (xiii) Inclusion of multiple environmental stresses (biotic and abiotic) in critical load determinations; (xiv) Ecological impacts of N deposition in the under-investigated areas; (xv) Empirical models for mechanistic effects at the local scale; (xvi) Broad-scale N and sulphur deposition input and their effects on forest ecosystem services; (xvii) Measurements of dry deposition of N; (xviii) Assessment of evapotranspiration; (xix) Remote sensing assessment of hydrological parameters; and (xx) Forest management for maximizing water provision and overall forest ecosystem services. Ground-level O3 is still the phytotoxic air pollutant of major concern to forest health. Specific issues about O3 are: (xxi) Developing dose–response relationships and stomatal O3 flux parameterizations for risk assessment, especially, in under-investigated regions; (xxii) Defining biologically based O3 standards for protection thresholds and critical levels; (xxiii) Use of free-air exposure facilities; (xxiv) Assessing O3 impacts on forest ecosystem services.
显示更多 [+] 显示较少 [-]Organohalogenated contaminants in type 2 diabetic serum from Jeddah, Saudi Arabia
2016
Ali, Nadeem | Rajeh, Nisreen | Wang, Wei | Abualnaja, Khalid O. | Kumosani, Taha A. | Albar, Hussain Mohammed Salem | Eqani, Syed Ali Musstjab Akber Shah | Ismail, Iqbal M.I.
Most of the organohalogenated contaminants (OHCs) have high environmental stability and are lipophilic in nature, thus bioaccumulate through the various routes e.g., inhalation, dermal contact and food intake. Human exposure to these OHCs can induce adverse health effects. Studies on the occurrence of OHCs in human samples from Saudi Arabia are scarce. Therefore, this study aimed at providing preliminary insight on the occurrence of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated biphenyl ethers (PBDEs) in diabetic and non-diabetic donors from KSA. Serum samples were collected from type 2 diabetic patients (n = 40) and control donors (n = 20) to study the impact of OHCs on their health. For the first time we studied the difference of ƩOHCs in type 2 diabetic and control participants. The order of obtained results was ƩOCPs (35–650 ng/g lw)> ƩPCBs (15–90 ng/g lw)> ƩPBDEs (1.5–68 ng/g lw). The major contributors were p,p′-DDE (median 44 ng/g lw), PCB 153 (2.3 ng/g lw), PCB 138 (2.1 ng/g lw), BDE 153 (1.2 ng/g lw) and BDE 47 (0.85 ng/g lw). Exposure to different OHCs between male and female donors was not significantly different (p > 0.05). However, ƩPCBs and ƩOHCs were significantly higher (p < 0.05) in diabetic donors than those of control group. We computed significantly positive correlations (p < 0.05) among different OHCs and between OHCs and age factor. The current study highlights the presence of different OHCs in humans from Jeddah, KSA. This is a preliminary study based on small sample size but our results suggested that detailed studies are required to understand the sources of these pollutants and their impact on human health.
显示更多 [+] 显示较少 [-]Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil
2016
Zhang, Guixiang | Guo, Xiaofang | Zhao, Zhihua | He, Qiusheng | Wang, Shuifeng | Zhu, Yuen | Yan, Yulong | Liu, Xitao | Sun, Ke | Zhao, Ye | Qian, Tianwei
A pot experiment was conducted to investigate the effects of biochars on the availability of heavy metals (Cd, Cu, Mn, Ni, Pb, and Zn) to ryegrass in an alkaline contaminated soil. Biochars only slightly decreased or even increased the availability of heavy metals assesses by chemical extractant (a mixture of 0.05 mol L−1 ethylenediaminetetraacetic acid disodium, 0.01 mol L−1 CaCl2, and 0.1 mol L−1 triethanolamine). The significantly positive correlation between most chemical-extractable heavy metals and the ash content in biochars indicated the positive role of ash in this extraction. Biochars significantly reduced the plant uptake of heavy metals, excluding Mn. The absence of a positive correlation between the chemical-extractable heavy metals and the plant uptake counterparts (except for Mn) indicates that chemical extractability is probably not a reliable indicator to predict the phytoavailability of most heavy metals in alkaline soils treated with biochars. The obviously negative correlation between the plant uptake of heavy metals (except for Mn) and the (O + N)/C and H/C indicates that biochars with more polar groups, which were produced at lower temperatures, had higher efficiency for reducing the phytoavailability of heavy metals. The significantly negative correlations between the plant uptake of Mn and ryegrass biomass indicated the “dilution effect” caused by the improvement of biomass. These observations will be helpful for designing biochars as soil amendments to reduce the availability of heavy metals to plants in soils, especially in alkaline soils.
显示更多 [+] 显示较少 [-]Copper and zinc, but not other priority toxic metals, pose risks to native aquatic species in a large urban lake in Eastern China
2016
Fu, Zhiyou | Wu, Fengchang | Chen, Lulu | Xu, Bingbing | Feng, Chenglian | Bai, Yingchen | Liao, Haiqing | Sun, Siyang | Giesy, John P. | Guo, Wenjing
Over the past 20 years, global production of copper (Cu) and zinc (Zn) rank in the top three compared to other metals such as Pb, Cd, Cr, Ni, As and Hg. However, due to the potential for exposure and toxicity to humans, more attention of environmental pollution was paid to other metals such as Cd and Hg. Aquatic organisms are sensitive to Cu and Zn. Even though internal concentrations of these required elements are homeostatically controlled, toxic effects can occur at the fish gill surface. In this work, concentrations in surface waters and toxic effects of Cu, Zn, Ni, Cr, Pb, Cd, As, Hg were determined and risk of various metals in Tai Lake, China were evaluated using both risk quotients and joint probability distributions. Two transition metals, Cu and Zn posed the greatest risks to aquatic organisms while measured concentrations of other metals were less than thresholds for adverse effects. Approximately 99.9% and 50.7% of the aquatic organisms were predicted to be affected by Cu and Zn in surface water of Tai Lake respectively. Our results highlight ecological risks of Cu and Zn in water of a typical, large, urban lake in Eastern China, which was ignored in the past.
显示更多 [+] 显示较少 [-]Caddisflies Hydropsyche spp. as biomonitors of trace metal bioavailability thresholds causing disturbance in freshwater stream benthic communities
2016
Awrahman, Zmnako A. | Rainbow, P. S. | Smith, Brian D. | Khan, Farhan R. | Fialkowski, Wojciech
Demonstration of an ecotoxicological effect of raised toxic metal bioavailabilities on benthic macroinvertebrate communities in contaminated freshwater streams typically requires the labour-intensive identification and quantification of such communities before the application of multivariate statistical analysis. A simpler approach is the use of accumulated trace metal concentrations in a metal-resistant biomonitor to define thresholds that indicate the presence of raised trace metal bioavailabilities causing ecotoxicological responses in populations of more metal-sensitive members of the community. We explore further the hypothesis that concentrations of toxic metals in larvae of species of the caddisfly genus Hydropsyche can be used to predict metal-driven ecotoxicological responses in more metal-sensitive mayflies, especially ephemerellid and heptageniid mayflies, in metal-contaminated rivers. Comparative investigation of two caddisflies, Hydropsyche siltalai and Hydropsyche angustipennis, from metal-contaminated rivers in Cornwall and Upper Silesia, Poland respectively, has provided preliminary evidence that this hypothesis is applicable across caddisfly species and contaminated river systems. Use of a combined toxic unit approach, relying on independent data sets, suggested that copper and probably also arsenic are the drivers of mayfly ecotoxicity in the River Hayle and the Red River in Cornwall, while cadmium, lead and zinc are the toxic agents in the Biala Przemsza River in Poland. This approach has great potential as a simple tool to detect the more subtle effects of mixed trace metal contamination in freshwater systems. An informed choice of suitable biomonitor extends the principle to different freshwater habitats over different ranges of severity of trace metal contamination.
显示更多 [+] 显示较少 [-]Simultaneous removal of acid green 25 and mercury ions from aqueous solutions using glutamine modified chitosan magnetic composite microspheres
2016
Tao, Xue | Li, Kun | Yan, Han | Yang, Hu | Li, Aimin
In this current work, the magnetic composite microsphere containing glutamine modified chitosan and silica coated Fe3O4 nanoparticles (CS-Gln-MCM) has been successfully prepared and extensively characterized, which is a kind of biodegradable materials. CS-Gln-MCM shows enhanced removal efficiency for both acid green 25 (AG25), an amphoteric dye, and mercury ions (Hg²⁺) from water in the respective while measured pH range compared with chitosan magnetic composite microsphere (CS-MCM) without modification. It is due to the fact that the grafted amino acid provides a variety of additional adsorption active sites and diverse adsorption mechanisms are involved. In AG25 and Hg²⁺ aqueous mixture, the modified adsorbents bear preferential adsorption for AG25 over Hg²⁺ in strong acidic solutions ascribed to multiple interactions between AG25 and CS-Gln-MCM, such as hydrogen bonding and electrostatic interactions. While, in weak acidic conditions, an efficient simultaneous removal is observed for different adsorption effects involved in aforementioned two pollutants. Besides, CS-Gln-MCM illuminates not only short equilibrium time for adsorption of each pollutant less than 20.0 min but also rapid magnetic separation from water and efficient regeneration after saturated adsorption. Therefore, CS-Gln-MCM bears great application potentials in water treatment.
显示更多 [+] 显示较少 [-]Feather mercury concentrations in Southern Ocean seabirds: Variation by species, site and time
2016
Becker, Peter H. | Goutner, Vassilis | Ryan, Peter G. | González-Solís, Jacob
We studied mercury contamination in 25 seabird species breeding along a latitudinal gradient across the Southern Ocean, from Gough Island (40°S) through Marion Island (47°S) to Byers Peninsula (63°S). Total mercury concentrations in body feather samples of adults caught at breeding colonies from 2008 to 2011 were determined. Krill (Euphausia spp.) and other zooplankton consumers had low mercury concentrations (gentoo penguin Pygoscelis papua, chinstrap penguin Pseudomonas Antarctica, common diving petrel Pelecanoides urinatrix, broad-billed prion Pachyptila vittata; mean levels 308–753 ng g−1), whereas seabirds consuming squid or carrion had high mercury concentrations (ascending order: Kerguelen petrel Aphrodroma brevirostris, southern giant petrel Macronectes giganteus, soft-plumaged petrel Pterodroma mollis, sooty albatross Phoebetria fusca, Atlantic petrel Pterodroma incerta, northern giant petrel Macronectes halli, great-winged petrel Pterodroma macroptera; 10,720–28038 ng g−1). The two species with the highest mercury concentrations, northern giant petrels and great-winged petrels, bred at Marion Island. Among species investigated at multiple sites, southern giant petrels had higher mercury levels at Marion than at Gough Island and Byers Peninsula. Mercury levels among Byers Peninsula seabirds were low, in two species even lower than levels measured 10 years before at Bird Island, South Georgia. Replicate measurements after about 25 years at Gough Island showed much higher mercury levels in feathers of sooty albatrosses (by 187%), soft-plumaged petrels (53%) and Atlantic petrels (49%). Concentrations similar to the past were detected in southern giant petrels at Gough and Marion islands, and in northern giant petrels at Marion. There were no clear indications that timing of moult or migratory behavior affected mercury contamination patterns among species. Causes of inter-site or temporal differences in mercury contamination could not be verified due to a lack of long-term data related to species’ diet and trophic levels, which should be collected in future together with data on mercury contamination.
显示更多 [+] 显示较少 [-]Estimating ground-level PM10 in a Chinese city by combining satellite data, meteorological information and a land use regression model
2016
Meng, Xia | Fu, Qingyan | Ma, Zongwei | Chen, Li | Zou, Bin | Zhang, Yan | Xue, Wenbo | Wang, Jinnan | Wang, Dongfang | Kan, Haidong | Liu, Yang
Development of exposure assessment model is the key component for epidemiological studies concerning air pollution, but the evidence from China is limited. Therefore, a linear mixed effects (LME) model was established in this study in a Chinese metropolis by incorporating aerosol optical depth (AOD), meteorological information and the land use regression (LUR) model to predict ground PM10 levels on high spatiotemporal resolution. The cross validation (CV) R² and the RMSE of the LME model were 0.87 and 19.2 μg/m³, respectively. The relative prediction error (RPE) of daily and annual mean predicted PM10 concentrations were 19.1% and 7.5%, respectively. This study was the first attempt in China to estimate both short-term and long-term variation of PM10 levels with high spatial resolution in a Chinese metropolis with the LME model. The results suggested that the LME model could provide exposure assessment for short-term and long-term epidemiological studies in China.
显示更多 [+] 显示较少 [-]Multiscale correlations of iron phases and heavy metals in technogenic magnetic particles from contaminated soils
2016
Yu, Xiuling | Lu, Shenggao
Technogenic magnetic particles (TMPs) are carriers of heavy metals and organic contaminants, which derived from anthropogenic activities. However, little information on the relationship between heavy metals and TMP carrier phases at the micrometer scale is available. This study determined the distribution and association of heavy metals and magnetic phases in TMPs in three contaminated soils at the micrometer scale using micro-X-ray fluorescence (μ-XRF) and micro-X-ray absorption near-edge structure (μ-XANES) spectroscopy. Multiscale correlations of heavy metals in TMPs were elucidated using wavelet transform analysis. μ-XRF mapping showed that Fe was enriched and closely correlated with Co, Cr, and Pb in TMPs from steel industrial areas. Fluorescence mapping and wavelet analysis showed that ferroalloy was a major magnetic signature and heavy metal carrier in TMPs, because most heavy metals were highly associated with ferroalloy at all size scales. Multiscale analysis revealed that heavy metals in the TMPs were from multiple sources. Iron K-edge μ-XANES spectra revealed that metallic iron, ferroalloy, and magnetite were the main iron magnetic phases in the TMPs. The relative percentage of these magnetic phases depended on their emission sources. Heatmap analysis revealed that Co, Pb, Cu, Cr, and Ni were mainly derived from ferroalloy particles, while As was derived from both ferroalloy and metallic iron phases. Our results indicated the scale-dependent correlations of magnetic phases and heavy metals in TMPs. The combination of synchrotron based X-ray microprobe techniques and multiscale analysis provides a powerful tool for identifying the magnetic phases from different sources and quantifying the association of iron phases and heavy metals at micrometer scale.
显示更多 [+] 显示较少 [-]Hydrology and phosphorus transport simulation in a lowland polder by a coupled modeling system
2016
Yan, Renhua | Huang, Jiacong | Li, Lingling | Gao, Junfeng
Modeling the rain-runoff processes and phosphorus transport processes in lowland polders is critical in finding reasonable measures to alleviate the eutrophication problem of downstream rivers and lakes. This study develops a lowland Polder Hydrology and Phosphorus modeling System (PHPS) by coupling the WALRUS-paddy model and an improved phosphorus module of a Phosphorus Dynamic model for lowland Polder systems (PDP). It considers some important hydrological characteristics, such as groundwater–unsaturated zone coupling, groundwater–surface water feedback, human-controlled irrigation and discharge, and detailed physical and biochemical cycles of phosphorus in surface water. The application of the model in the Jianwei polder shows that the simulated phosphorus matches well with the measured values. The high precision of this model combined with its low input data requirement and efficient computation make it practical and easy to the water resources management of Chinese polders. Parameter sensitivity analysis demonstrates that Kuptake, cQ2, cW1, and cQ1 exert a significant effect on the modeled results, whereas KresuspensionMax, Ksettling, and Kmineralization have little effect on the modeled total phosphorus. Among the three types of uncertainties (i.e., parameter, initial condition, and forcing uncertainties), forcing uncertainty produces the strongest effect on the simulated phosphorus. Based on the analysis result of annual phosphorus balance when considering the high import from irrigation and fertilization, lowland polder is capable of retaining phosphorus and reducing phosphorus export to surrounding aquatic ecosystems because of their special hydrological regulation regime.
显示更多 [+] 显示较少 [-]