细化搜索
结果 411-420 的 4,309
Quantifying exposure of wild bumblebees to mixtures of agrochemicals in agricultural and urban landscapes 全文
2017
Botías, Cristina | David, Arthur | Hill, Elizabeth M. | Goulson, Dave
Quantifying exposure of wild bumblebees to mixtures of agrochemicals in agricultural and urban landscapes 全文
2017
Botías, Cristina | David, Arthur | Hill, Elizabeth M. | Goulson, Dave
The increased use of pesticides has caused concern over the possible direct association of exposure to combinations of these compounds with bee health problems. There is growing proof that bees are regularly exposed to mixtures of agrochemicals, but most research has been focused on managed bees living in farmland, whereas little is known about exposure of wild bees, both in farmland and urban habitats. To determine exposure of wild bumblebees to pesticides in agricultural and urban environments through the season, specimens of five different species were collected from farms and ornamental urban gardens in three sampling periods. Five neonicotinoid insecticides, thirteen fungicides and a pesticide synergist were analysed in each of the specimens collected. In total, 61% of the 150 individuals tested had detectable levels of at least one of the compounds, with boscalid being the most frequently detected (35%), followed by tebuconazole (27%), spiroxamine (19%), carbendazim (11%), epoxiconazole (8%), imidacloprid (7%), metconazole (7%) and thiamethoxam (6%). Quantifiable concentrations ranged from 0.17 to 54.4 ng/g (bee body weight) for individual pesticides. From all the bees where pesticides were detected, the majority (71%) had more than one compound, with a maximum of seven pesticides detected in one specimen. Concentrations and detection frequencies were higher in bees collected from farmland compared to urban sites, and pesticide concentrations decreased through the season. Overall, our results show that wild bumblebees are exposed to multiple pesticides when foraging in agricultural and urban landscapes. Such mixtures are detected in bee tissues not just during the crop flowering period, but also later in the season. Therefore, contact with these combinations of active compounds might be more prolonged in time and widespread in the environment than previously assumed. These findings may help to direct future research and pesticide regulation strategies to promote the conservation of wild bee populations.
显示更多 [+] 显示较少 [-]Quantifying exposure of wild bumblebees to mixtures of agrochemicals in agricultural and urban landscapes 全文
2017
Botías, Cristina | David, Arthur | Hill, Elizabeth M. | Goulson, Dave | Department for Environment, Food & Rural Affairs (UK) | Sheepdrove Trust
The increased use of pesticides has caused concern over the possible direct association of exposure to combinations of these compounds with bee health problems. There is growing proof that bees are regularly exposed to mixtures of agrochemicals, but most research has been focused on managed bees living in farmland, whereas little is known about exposure of wild bees, both in farmland and urban habitats. To determine exposure of wild bumblebees to pesticides in agricultural and urban environments through the season, specimens of five different species were collected from farms and ornamental urban gardens in three sampling periods. Five neonicotinoid insecticides, thirteen fungicides and a pesticide synergist were analysed in each of the specimens collected. In total, 61% of the 150 individuals tested had detectable levels of at least one of the compounds, with boscalid being the most frequently detected (35%), followed by tebuconazole (27%), spiroxamine (19%), carbendazim (11%), epoxiconazole (8%), imidacloprid (7%), metconazole (7%) and thiamethoxam (6%). Quantifiable concentrations ranged from 0.17 to 54.4 ng/g (bee body weight) for individual pesticides. From all the bees where pesticides were detected, the majority (71%) had more than one compound, with a maximum of seven pesticides detected in one specimen. Concentrations and detection frequencies were higher in bees collected from farmland compared to urban sites, and pesticide concentrations decreased through the season. Overall, our results show that wild bumblebees are exposed to multiple pesticides when foraging in agricultural and urban landscapes. Such mixtures are detected in bee tissues not just during the crop flowering period, but also later in the season. Therefore, contact with these combinations of active compounds might be more prolonged in time and widespread in the environment than previously assumed. These findings may help to direct future research and pesticide regulation strategies to promote the conservation of wild bee populations. | We are grateful to Defra (Research Project PS2372) for funding this work and to the five farmers for allowing us to work on their property. We are also grateful to the Sheepdrove Trust for contributing to the costs of the analytical work.
显示更多 [+] 显示较少 [-]Metabolism of ibuprofen in higher plants: A model Arabidopsis thaliana cell suspension culture system 全文
2017
Marsik, P. | Sisa, M. | Lacina, O. | Motkova, K. | Langhansova, L. | Rezek, J. | Vanek, T.
The uptake and metabolism of ibuprofen (IBU) by plants at the cellular level was investigated using a suspension culture of A. thaliana. Almost all IBU added to the medium (200 μM) was metabolized or bound to insoluble structures in 5 days. More than 300 metabolites were determined by liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis, and most of these are first reported for plants here. Although hydroxylated derivatives formed by oxidation on the isobutyl side chain were the main first-step products of IBU degradation, conjugates of these products with sugar, methyl and amino acid groups were the dominant metabolites in the culture. The main portion of total added IBU (81%) was accumulated in the extractable intracellular pool, whereas the cultivation medium fraction contained only 19%. The amount of the insoluble cell-wall-bound IBU was negligible (0.005% of total IBU).
显示更多 [+] 显示较少 [-]Multiple spectroscopic analyses reveal the fate and metabolism of sulfamide herbicide triafamone in agricultural environments 全文
2017
Wang, Mengcen | Qian, Yuan | Liu, Xiaoyu | Wei, Peng | Deng, Man | Wang, Lei | Wu, Huiming | Zhu, Guonian
Triafamone, a sulfamide herbicide, has been extensively utilized for weed control in rice paddies in Asia. However, its fate and transformation in the environment have not been established. Through a rice paddy microcosm-based simulation trial combined with multiple spectroscopic analyses, we isolated and identified three novel metabolites of triafamone, including hydroxyl triafamone (HTA), hydroxyl triafamone glycoside (HTAG), and oxazolidinedione triafamone (OTA). When triafamone was applied to rice paddies at a concentration of 34.2 g active ingredient/ha, this was predominantly distributed in the paddy soil and water, and then rapidly dissipated in accordance with the first-order rate model, with half-lives of 4.3–11.0 days. As the main transformation pathway, triafamone was assimilated by the rice plants and was detoxified into HTAG, whereas the rest was reduced into HTA with subsequent formation of OTA. At the senescence stage, brown rice had incurred triafamone at a concentration of 0.0016 mg/kg, but the hazard quotient was <1, suggesting that long-term consumption of the triafamone-containing brown rice is relatively safe. The findings of the present study indicate that triafamone is actively metabolized in the agricultural environment, and elucidation of the link between environmental exposure to these triazine or oxazolidinedione moieties that contain metabolites and their potential impacts is warranted.
显示更多 [+] 显示较少 [-]Emission factor for atmospheric ammonia from a typical municipal wastewater treatment plant in South China 全文
2017
Zhang, Chunlin | Geng, Xuesong | Wang, Hao | Zhou, Lei | Wang, Boguang
Atmospheric ammonia (NH3), a common alkaline gas found in air, plays a significant role in atmospheric chemistry, such as in the formation of secondary particles. However, large uncertainties remain in the estimation of ammonia emissions from nonagricultural sources, such as wastewater treatment plants (WWTPs). In this study, the ammonia emission factors from a large WWTP utilizing three typical biological treatment techniques to process wastewater in South China were calculated using the US EPA's WATER9 model with three years of raw sewage measurements and information about the facility. The individual emission factors calculated were 0.15 ± 0.03, 0.24 ± 0.05, 0.29 ± 0.06, and 0.25 ± 0.05 g NH3 m−3 sewage for the adsorption-biodegradation activated sludge treatment process, the UNITANK process (an upgrade of the sequencing batch reactor activated sludge treatment process), and two slightly different anaerobic-anoxic-oxic treatment processes, respectively. The overall emission factor of the WWTP was 0.24 ± 0.06 g NH3m−3 sewage. The pH of the wastewater influent is likely an important factor affecting ammonia emissions, because higher emission factors existed at higher pH values. Based on the ammonia emission factor generated in this study, sewage treatment accounted for approximately 4% of the ammonia emissions for the urban area of South China's Pearl River Delta (PRD) in 2006, which is much less than the value of 34% estimated in previous studies. To reduce the large uncertainty in the estimation of ammonia emissions in China, more field measurements are required.
显示更多 [+] 显示较少 [-]Impact of bio-palladium nanoparticles (bio-Pd NPs) on the activity and structure of a marine microbial community 全文
2017
Nuzzo, Andrea | Hosseinkhani, Baharak | Boon, Nico | Zanaroli, Giulio | Fava, Fabio
Biogenic palladium nanoparticles (bio-Pd NPs) represent a promising catalyst for organohalide remediation in water and sediments. However, the available information regarding their possible impact in case of release into the environment, particularly on the environmental microbiota, is limited. In this study the toxicity of bio-Pd NPs on the model marine bacterium V. fischeri was assessed. The impacts of different concentrations of bio-Pd NPs on the respiratory metabolisms (i.e. organohalide respiration, sulfate reduction and methanogenesis) and the structure of a PCB-dechlorinating microbial community enriched form a marine sediment were also investigated in microcosms mimicking the actual sampling site conditions. Bio-Pd NPs had no toxic effect on V. fischeri. In addition, they had no significant effects on PCB-dehalogenating activity, while showing a partial, dose-dependent inhibitory effect on sulfate reduction as well as on methanogenesis. No toxic effects by bio-Pd NPs could be also observed on the total bacterial community structure, as its biodiversity was increased compared to the not exposed community. In addition, resilience of the microbial community to bio-Pd NPs exposure was observed, being the final community organization (Gini coefficient) of samples exposed to bio-Pd NPs similar to that of the not exposed one. Considering all the factors evaluated, bio-Pd NPs could be deemed as non-toxic to the marine microbiota in the conditions tested. This is the first study in which the impact of bio-Pd NPs is extensively evaluated over a microbial community in relevant environmental conditions, providing important information for the assessment of their environmental safety.
显示更多 [+] 显示较少 [-]Hydrocarbon composition and concentrations in the Gulf of Mexico sediments in the 3 years following the Macondo well blowout 全文
2017
Babcock-Adams, Lydia | Chanton, Jeffrey P. | Joye, Samantha B. | Medeiros, Patricia M.
In April of 2010, the Macondo well blowout in the northern Gulf of Mexico resulted in an unprecedented release of oil into the water column at a depth of approximately 1500 m. A time series of surface and subsurface sediment samples were collected to the northwest of the well from 2010 to 2013 for molecular biomarker and bulk carbon isotopic analyses. While no clear trend was observed in subsurface sediments, surface sediments (0–3 cm) showed a clear pattern with total concentrations of n-alkanes, unresolved complex mixture (UCM), and petroleum biomarkers (terpanes, hopanes, steranes) increasing from May to September 2010, peaking in late November 2010, and strongly decreasing in the subsequent years. The peak in hydrocarbon concentrations were corroborated by higher organic carbon contents, more depleted Δ14C values and biomarker ratios similar to those of the initial MC252 crude oil reported in the literature. These results indicate that at least part of oil discharged from the accident sedimented to the seafloor in subsequent months, resulting in an apparent accumulation of hydrocarbons on the seabed by the end of 2010. Sediment resuspension and transport or biodegradation may account for the decrease in sedimented oil quantities in the years following the Macondo well spill.
显示更多 [+] 显示较少 [-]Effects of acetylacetone on the photoconversion of pharmaceuticals in natural and pure waters 全文
2017
Zhang, Guoyang | Wu, Bingdang | Zhang, Shujuan
Acetylacetone (AcAc) has proven to be a potent photo-activator in the degradation of color compounds. The effects of AcAc on the photochemical conversion of five colorless pharmaceuticals were for the first time investigated in both pure and natural waters with the UV/H2O2 process as a reference. In most cases, AcAc played a similar role to H2O2. For example, AcAc accelerated the photodecomposition of carbamazepine, oxytetracycline, and tetracycline in pure water. Meanwhile, the toxicity of tetracyclines and carbamazepine were reduced to a similar extent to that in the UV/H2O2 process. However, AcAc worked in a way different from that of H2O2. Based on the degradation kinetics, solvent kinetic isotope effect, and the inhibiting effect of O2, the underlying mechanisms for the degradation of pharmaceuticals in the UV/AcAc process were believed mainly to be direct energy transfer from excited AcAc to pharmaceuticals rather than reactive oxygen species-mediated reactions. In natural waters, dissolved organic matter (DOM) played a crucial role in the photoconversion of pharmaceuticals. The role of H2O2 became negligible due to the scavenging effects of DOM and inorganic ions. Interestingly, in natural waters, AcAc first accelerated the photodecomposition of pharmaceuticals and then led to a dramatic reduction with the depletion of dissolved oxygen. Considering the natural occurrence of diketones, the results here point out a possible pathway in the fate and transport of pharmaceuticals in aquatic ecosystems.
显示更多 [+] 显示较少 [-]Probabilistic forecasting for extreme NO2 pollution episodes 全文
2017
Aznarte, José L.
In this study, we investigate the convenience of quantile regression to predict extreme concentrations of NO2. Contrarily to the usual point-forecasting, where a single value is forecast for each horizon, probabilistic forecasting through quantile regression allows for the prediction of the full probability distribution, which in turn allows to build models specifically fit for the tails of this distribution.Using data from the city of Madrid, including NO2 concentrations as well as meteorological measures, we build models that predict extreme NO2 concentrations, outperforming point-forecasting alternatives, and we prove that the predictions are accurate, reliable and sharp. Besides, we study the relative importance of the independent variables involved, and show how the important variables for the median quantile are different than those important for the upper quantiles. Furthermore, we present a method to compute the probability of exceedance of thresholds, which is a simple and comprehensible manner to present probabilistic forecasts maximizing their usefulness.
显示更多 [+] 显示较少 [-]Surface runoff and subsurface tile drain losses of neonicotinoids and companion herbicides at edge-of-field 全文
2017
Chrétien, François | Giroux, Isabelle | Thériault, Georges | Gagnon, Patrick | Corriveau, Julie
With their application as seed coatings, the use of neonicotinoid insecticides increased dramatically during the last decade. They are now frequently detected in aquatic ecosystems at concentrations susceptible to harm aquatic invertebrates at individual and population levels. This study intent was to document surface runoff and subsurface tile drain losses of two common neonicotinoids (thiamethoxam and clothianidin) compared to those of companion herbicides (atrazine, glyphosate, S-metolachlor and mesotrione) at the edge of a 22.5-ha field under a corn-soybean rotation. A total of 14 surface runoff and tile drain discharge events were sampled over two years. Events and annual unit mass losses were computed using flow-weighted concentrations and total surface runoff and tile drain flow volumes. Detection frequencies close to 100% in edge-of-field surface runoff and tile drain water samples were observed for thiamethoxam and clothianidin even though only thiamethoxam had been applied in the first year. In 2014, thiamethoxam median concentrations in surface runoff and tile drain samples were respectively 0.46 and 0.16 μg/L, while respective maximum concentrations of 2.20 and 0.44 μg/L were measured in surface runoff and tile drain samples during the first post-seeding storm event. For clothianidin, median concentrations in surface runoff and tile drain samples were 0.02 and 0.01, μg/L, and respective maximum concentrations were 0.07 μg/L and 0.05 μg/L. Surface runoff and tile drain discharge were key transport mechanisms with similar contributions of 53 and 47% of measured mass losses, respectively. Even if thiamethoxam was applied at a relatively low rate and had a low mass exportation value (0.3%), the relative toxicity was one to two orders of magnitude higher than those of the other chemicals applied in 2014 and 2015. Companion herbicides, except glyphosate in tile drains, exceeded their water quality guideline during one sampling campaign after application but rapidly resumed below these limits.
显示更多 [+] 显示较少 [-]Preparation of immobilized coating Fenton-like catalyst for high efficient degradation of phenol 全文
2017
Wang, Jiankang | Yao, Zhongping | Wang, Yajing | Xia, Qixing | Chu, Huiya | Jiang, Zhaohua
In this study, solid acid amorphous Fe3O4/SiO2 ceramic coating decorated with sulfur on Q235 carbon steel as Fenton-like catalyst for phenol degradation was successfully prepared by plasma electrolytic oxidation (PEO) in silicate electrolyte containing Na2S2O8 as sulfur source. The surface morphology and phase composition were characterized by SEM, EDS, XRD and XPS analyses. NH3-TPD was used to evaluate surface acidity of PEO coating. The results indicated that sulfur decorated amorphous Fe3O4/SiO2 ceramic coatings with porous structure and higher acid strength had the similar pore size and the surface became more and more uneven with the increase of Na2S2O8 in the silicate electrolyte. The Fenton-like catalytic activity of sulfur decorated PEO coatings was also evaluated. In contrast to negligible catalytic activity of sulfur undecorated PEO coating, catalytic activity of sulfur decorated PEO coating was excellent and PEO coating prepared with 3.0 g Na2S2O8 had the highest catalytic activity which could degrade 99% of phenol within 8 min under circumneutral pH. The outstanding performance of sulfur decorated PEO coating was attributed to strong acidic microenvironment and more Fe²⁺ on the surface. The strong acid sites played a key factor in determining catalytic activity of catalyst. In conclusion, rapid phenol removal under circumneutral pH and easier separation endowed it potential application in wastewater treatment. In addition, this strategy of preparing immobilized solid acid coating could provide guidance for designing Fenton-like catalyst with excellent catalytic activity and easier separation.
显示更多 [+] 显示较少 [-]