细化搜索
结果 421-430 的 4,929
Hydrogen gas alleviates toxic effects of cadmium in Brassica campestris seedlings through up-regulation of the antioxidant capacities: Possible involvement of nitric oxide
2019
Su, Nana | Wu, Qi | Chen, Hui | Huang, Yifan | Zhu, Zhengbo | Chen, Yahua | Cui, Jin
Hydrogen gas (H₂) has been shown as an important factor in plant tolerance to abiotic stresses, but the underlying mechanisms remain unclear. In the present study, the effects of H₂ and its interaction with nitric oxide (NO) on alleviating cadmium (Cd) stress in Brassica campestris seedlings were investigated. NO donor (SNP) or hydrogen-rich water (HRW) treatment showed a significant improvement in growth of Cd-stressed seedlings. Cd treatment upregulated both endogenous NO and H₂ (36% and 66%, respectively), and the increase of H₂ was prior to NO increase. When treated with NO scavenger (PTIO) or NO biosynthesis enzyme inhibitors (L-NAME and Gln), HRW-induced alleviation under Cd stress was prevented. Under Cd stress, HRW pretreatment significantly enhanced the NO accumulation, and together up-regulated the activity of NR (nitrate reductase) and expression of NR. HRW induced lower reactive oxygen species (ROS), higher AsA content, enhanced activity of POD (peroxidase) and SOD (superoxide dismutase) in seedling roots were inhibited by PTIO, L-NAME and Gln. Through proteomic analysis, the level of 29 proteins were changed in response to H₂ and NO-induced amelioration of Cd stress. Nearly half of them were involved in oxidation-reduction processes (about 20%) or antioxidant enzymes (approximately 20%). These results strongly indicate that in Cd-stressed seedlings, pretreatment with HRW induces the accumulation of H₂ (biosynthesized or permeated), which further stimulates the biosynthesis of NO through the NR pathway. Finally, H₂ and NO together enhance the antioxidant capabilities of seedlings in response to Cd toxicity.
显示更多 [+] 显示较少 [-]Spatiotemporal distribution, source apportionment and ecological risk assessment of PBDEs and PAHs in the Guanlan River from rapidly urbanizing areas of Shenzhen, China
2019
Liang, Xinxiu | Junaid, Muhammad | Wang, Zhifen | Li, Tianhong | Xu, Nan
In this study, nine congeners of polybrominated diphenyl ethers (PBDEs) and sixteen congeners of polycyclic aromatic hydrocarbons (PAHs) were measured in water samples to elucidate their spatial distribution, congener profiles, sources and ecological risks in the Guanlan River during both the dry season (DS) and the wet season (WS). The concentration of Σ9PBDE ranged from 58.40 to 186.35 ng/L with an average of 115.72 ng/L in the DS, and from 8.20 to 37.80 ng/L with an average of 22.15 ng/L in the WS. Meanwhile, the concentration of Σ16PAHs was ranged from 121.80 to 8371.70 ng/L with an average of 3271.18 ng/L in the DS and from 1.85 to 7124.25 ng/L with an average of 908.11 ng/L in the WS. The concentrations of PBDEs and PAHs in the DS were significantly higher than those in the WS, probably due to the dilution of the river during the rainy season. Moreover, the spatial distribution of pollutants revealed decreasing trend in the concentration from upstream to downstream and almost identical pattern was observed during both seasons. The source apportionment suggested that penta-BDE and to some extent octa-BDE commercial products were major sources of PBDEs in the study area. However, the sources of PAHs were mainly comprised of fossil fuels and biomass burning, followed by the petroleum products and their mixtures. The results of the ecological risk assessment indicated PBDEs contamination posed high ecological risks, while PAHs exhibited low or no ecological risks in the study area. Consistent with the environmental levels, the ecological risks of pollutants were relatively lower in the WS, compared to that in the DS. The results from this study would provide valuable baseline data and technical support for policy makers to protect the ecological environment of the Guanlan River.
显示更多 [+] 显示较少 [-]Tissue level distribution of toxic and essential elements during the germination stage of corn seeds (Zea mays, L.) using LA-ICP-MS
2019
Gaiss, Shelby | Amarasiriwardena, Dulasiri | Alexander, David | Wu, Fengchang
Both essential and toxic metal contaminants impact agricultural crops by bioaccumulation in plants. The goal of this study was to evaluate the tissue-level spatial distribution of metal(loids) in corn seeds (Zea mays, L.) from contaminated corn fields near the Xikuangshan (XKS) antimony mine in Hunan, China, and compared them with corn (Zea mays everta L., popcorn) grown in a farm in Amherst, MA that practices sustainable farming as a control. How toxic and essential metals translocate through the roots and shoots during early stages of germination was also investigated. The cleaned corn seed samples were mounted in resin blocks and longitudinally dissected into thin sections. The laser ablation parameters were optimized, and the instrument was calibrated using tomato leaf standard reference material (NIST SRM 1573a) in a pellet form. Tissue level distributions of metal(loid)s As, Cd, Hg, Sb and Zn in corn seeds collected were determined using (LA-ICP-MS). Seeds from the control farm were germinated and their roots and shoots were analyzed to determine tissue level concentrations and their spatial distributions. It was found that seeds from the XKS mine region in China had higher overall concentration of all elements analyzed due to metal(loids) absorbed from contaminated mine soils. Metal(loids) concentrations were highest in the embryo (∼360 mg/kg) and pericarp (∼0.48 mg/kg) compared with the endosperm of corn seeds. Essential element Zn was found in the embryo and emerging coleoptile and radicle. Finally, in both roots and shoots, element concentrations were highest proximally to the tip cap compared to distal concentrations and later translocated to distal tissue regions. This study offers unique insights of metal(loid) bioaccumulation and translocation in corn and thus is better able to track metal(loids) contaminants trafficking in our food systems.
显示更多 [+] 显示较少 [-]Enhanced biochar stabilities and adsorption properties for tetracycline by synthesizing silica-composited biochar
2019
Zhao, Zhendong | Nie, Tiantian | Zhou, Wenjun
The silica-composited biochars (SBC) were synthesized by adding silica particulates into bamboo biomass during pyrolysis at 700 °C to examine the effect of silica addition on biochar stabilities and adsorption properties for tetracycline (TC). Silica addition increased the total pore volume and average pore diameter of biochar due to the abundant mesopores in SBC, but decreased specific surface area due to the blockage of biochar pore with silica particles. Biochar stability was obviously enhanced with silica addition due to the decreased atomic ratio of H/C and O/C, the reduced C loss amount after chemical oxidation treatment, and the increased thermal stability. The adsorption capacities of SBC for TC were greatly enhanced with silica addition and increased with the increasing silica addition amount, which can be attributed to the facilitating effect of π–π electron donor acceptor (EDA) interaction and pore-filling effect. In addition, silica addition can also effectively enhance the oxidation resistance of biochar for TC adsorption, since the decreased degree (δ) of TC adsorption amounts on the biochars after chemical oxidation decreased with the increasing silica addition level. The observed positive correlations between δ values and the corresponding C loss amount of biochars after chemical oxidation suggested that the high carbon stability was favorable for the maintenance of biochar adsorption capacity. These results can provide a new way to improve biochar stabilities, aging resistance, and adsorption properties for organic pollutants.
显示更多 [+] 显示较少 [-]Application of general toxic effects of ionic liquids to predict toxicities of ionic liquids to Spodoptera frugiperda 9, Eisenia fetida, Caenorhabditis elegans, and Danio rerio
2019
Cho, Chul-Woong | Yun, Yeoung-Sang
Modeling for the toxicity of ionic liquids (ILs) is necessary to fill data gaps for untested chemicals and to understand the relevant mechanisms at the molecular level. In order for many researchers to easily predict toxicity and/or develop some prediction model, simple method(s) based on a single parameter should be proposed. Therefore, previously our group developed a comprehensive toxicity prediction model with unified linear free-energy relationship descriptors to address the single parameter for predicting the toxicities, as follows (Cho et al., 2016b).Log 1/toxicity in the unit of mM= (2.254 Ec – 2.545 Sc + 0.646 Ac – 1.471 Bc + 1.650 Vc + 2.917 J+ – 0.201 Ea + 0.418 Va + 0.131 J−) – 0.709.It is considered that the model can calculate the general toxicological effect of ILs in parenthesis, as it was developed on the basis of numerous toxic effects i.e., 58 toxicity testing methods and about 1600 data points. In order to check the hypothesis, the values calculated by the model were correlated with four different datasets from insect cell line (Spodoptera frugiperda 9), earthworm (Eisenia fetida), nematode (Caenorhabditis elegans), and fish (Danio rerio). The results clearly showed that the calculated values are in good agreement with each dataset. In the case of S. frugiperda 9 cells, the calculated parameters were correlated with log1/LC50 values, measured after 24 h and 48 h incubation, in R2 of 0.67 and 0.88, respectively. The R2 values for the earthworm, nematode, and fish were 0.88, 0.96, and 0.94–0.95, respectively. This study confirmed that the comprehensive model can be simply and accurately used to predict toxicity of ILs.
显示更多 [+] 显示较少 [-]3D graphene-based gel photocatalysts for environmental pollutants degradation
2019
Zhang, Fan | Li, Yue-Hua | Li, Jing-Yu | Tang, Zi-Rong | Xu, Yi-Jun
Enormous research interest is devoted to fabricating three-dimensional graphene-based gels (3D GBGs) toward improved conversion of solar energy by virtue of the intrinsic properties of single graphene and 3D porous structure characteristics. Here, this concise minireview is primarily focused on the recent progress on applications of 3D GBGs, including aerogels and hydrogels, in photocatalytic degradation of pollutants from water and air, such as organic pollutants, heavy metal ions, bacteria and gaseous pollutants. In particular, the preponderances of 3D GBG photocatalysts for environmental pollutants degradation have been elaborated. Furthermore, in addition to discussing opportunities offered by 3D GBG composite photocatalysts, we also describe the existing problems and the future direction of 3D GBG materials in this burgeoning research area. It is hoped that this review could spur multidisciplinary research interest for advancing the rational utilization of 3D GBGs for practical applications in environmental remediation.
显示更多 [+] 显示较少 [-]Sorption and transport of aluminum dialkyl phosphinate flame retardants and their hydrolysates in soils
2019
Shi, Fengqiong | Hao, Zhineng | Liang, Yong | Liu, Jiyan | Liu, Jingfu
Aluminum dialkyl phosphinates (ADPs) are a class of promising phosphorus-containing flame retardants, but their environmental fate is not well understood. Sorption and transport behaviors of ADPs, and their hydrolysates dialkyl phosphinic acids (DPAs) were studied by batch and column experiments. ADPs are less mobile in soil columns with more than half (>52.6%) of ADPs retained in the soil and residues in the topmost 2-cm layer account for more than 57% of total residues. Dissolution and dispersion of fine grain ADPs were responsible for the transport of ADPs. Sorption DPAs (logKₒc) was significantly related to the lipophilicity of DPAs (logD) (p < 0.05). Soil pH and clay content were the dominant factors governing the sorption and transport of DPAs in soils, indicating the importance of electrostatic interactions. The retardation factors (R) of DPAs derived from leaching experiments were pH-dependent with larger R values in the acidic soil (pH = 4.0) where anionic and neutral species of DPAs coexisted. Both physical and chemical non-equilibrium convection-dispersion equations (CDE) yield appropriate modeling for DPAs transport. In most cases, R values estimated from column tests differed from those derived from the batch experiments, which might be attributed to non-equilibrium sorption processes in dynamic conditions.
显示更多 [+] 显示较少 [-]Long-term aquaria study suggests species-specific responses of two cold-water corals to macro-and microplastics exposure
2019
Mouchi, Vincent | Chapron, Leila | Peru, Erwan | Pruski, Audrey M. | Meistertzheim, Anne-Leila | Vétion, Gilles | Galand, Pierre E. | Lartaud, Franck
Plastic pollution has been identified as a major threat for coastal marine life and ecosystems. Here, we test if the feeding behaviour and growth rate of the two most common cold-water coral species, Lophelia pertusa and Madrepora oculata, are affected by micro- or macroplastic exposures. Low-density polyethylene microplastics impair prey capture and growth rates of L. pertusa after five months of exposure. Macroplastic films, mimicking plastic bags trapped on deep-sea reefs, had however a limited impact on L. pertusa growth. This was due to an avoidance behaviour illustrated by the formation of skeletal ‘caps’ that changed the polyp orientation and allowed its access to food supply. On the contrary, M. oculata growth and feeding were not affected by plastic exposure. Such a species-specific response has the potential to induce a severe change in coral community composition and the associated biodiversity in deep-sea environments.
显示更多 [+] 显示较少 [-]Fomesafen impacts bacterial communities and enzyme activities in the rhizosphere
2019
Hu, Haiyan | Zhou, Hao | Zhou, Shixiong | Li, Zhaojun | Wei, Chaojun | Yu, Yong | Hay, Anthony G.
Fomesafen, a long-lived protoporphyrinogen-oxidase inhibitor, specially developed for post-emergence control of broad-leaf weeds, is used widely in soybean fields in northern China (Dayan and Duke, 2010). The impact of fomesafen on microbial communities in rhizosphere soils, however, is unknown. In this study we examined fomesafen degradation as well as its effects in the rhizosphere of soybean plants grown in a greenhouse. Fomesafen had shorter half-life in rhizosphere soil than previously reported for bulk soil from the same location (87 vs 120 days). The enzyme activity of soil extracts and the microbial community composition of 16S rRNA genes (16S) amplified from soil DNA were also investigated. Although not immediately apparent, both the high (37.5 mg kg⁻¹) and low (18.75 mg kg⁻¹) doses of fomesafen significantly decreased urease and invertase activities in the rhizosphere soil from days 30 and 45 respectively until the end of the experiment (90 days). Analysis of 16S amplicons demonstrated that fomesafen had a dose dependent effect, decreasing alpha diversity and altering beta diversity. Significant phylum level decreases were observed in five of the ten phyla that were most abundant in the control. Proteobacteria was the only phylum whose relative abundance increased in the presence of fomesafen, driven by increases in the genera Methylophilacaea, Dyella, and Sphingomonas. The functional implications of changes in 16S abundance as predicted using PICRUSt suggested that fomesafen enriched for enzymes involved in xenobiotic metabolism and detoxification (cytochrome P450s and glutathione metabolism). Our data suggest that, despite being degraded more rapidly in the rhizosphere than in bulk soil, fomesafen had long-lasting functional impacts on the soil microbial community.
显示更多 [+] 显示较少 [-]Biomonitoring of polycyclic aromatic hydrocarbons and synthetic musk compounds with Masson pine (Pinus massoniana L.) needles in Shanghai, China
2019
Wang, Xue-Tong | Zhou, Ying | Hu, Bao-Ping | Fu, Rui | Cheng, Hang-Xin
Twenty-six polycyclic aromatic hydrocarbons (PAHs) and four synthetic musk compounds (SMCs) accumulated by Masson pine needles from different areas of Shanghai were investigated in the present study. Concentrations of Σ26PAHs (sum of 26 PAHs) ranged from 234 × 10−3 to 5370 × 10−3 mg kg−1. Levels of Σ26PAHs in different sampling areas followed the order: urban areas (Puxi and Pudong) > suburbs > Chongming. Total concentrations of 16 USEPA priority PAHs ranged from 225 × 10−3 to 5180 × 10−3 mg kg−1, ranking at a relatively high level compared to other regions around the world. Factor analysis and multi-linear regression model has identified six sources of PAHs with relative contributions of 15.1% for F1 (vehicle emissions), 47.8% for F2 (natural gas and biomass combustion), 7.8% for F3 (oil), 10.6% for F4 (coal combustion), 15.7% for F5 (“anthracene” source) and 3.0% for F6 (coke tar). Total concentrations of 4 SMCs varied between 0.071 × 10−3 and 2.72 × 10−3 mg kg−1 in pine needles from Shanghai. SMCs with the highest detected frequency were Galaxolide and musk xylene, followed by musk ketone and Tonalide. The highest level of SMCs was found near industrial park and daily chemical plant. The results obtained from this study may have important reference value for local government in the control of atmospheric organic pollution.
显示更多 [+] 显示较少 [-]