细化搜索
结果 431-440 的 7,240
Thermal processing reduces PFAS concentrations in blue food – A systematic review and meta-analysis
2022
Vendl, Catharina | Pottier, Patrice | Taylor, Matthew D. | Bräunig, Jennifer | Gibson, Matthew J. | Hesselson, Daniel | Neely, G Gregory | Lagisz, Malgorzata | Nakagawa, Shinichi
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in the environment and often ingested with food. PFAS exposure in people can have detrimental health consequences. Therefore, reducing PFAS burdens in food items is of great importance to public health. Here, we investigated whether cooking reduces PFAS concentrations in animal-derived food products by synthesizing experimental studies. Further, we examined the moderating effects of the following five variables: cooking time, liquid/animal tissue ratio, cooking temperature, carbon chain length of PFAS and the cooking category (oil-based, water-based & no-liquid cooking). In our systematic review searches, we obtained 512 effect sizes (relative differences in PFAS concentration between raw and cooked samples) from 10 relevant studies. These studies exclusively explored changes in PFAS concentrations in cooked seafood and freshwater fish. Our multilevel-meta-analysis has revealed that, on average, cooking reduced PFAS concentrations by 29%, although heterogeneity among effect sizes was very high (I² = 94.65%). Our five moderators cumulatively explained 49% of the observed heterogeneity. Specifically, an increase in cooking time and liquid/animal tissue ratio, as well as shorter carbon chain length of PFAS (when cooked with oil) were associated with significant reductions in PFAS concentrations. The effects of different ways of cooking depended on the other moderators, while the effect of cooking temperature itself was not significant. Overall, cooking can reduce PFAS concentrations in blue food (seafood and freshwater fish). However, it is important to note that complete PFAS elimination requires unrealistically long cooking times and large liquid/animal tissue ratios. Currently, literature on the impact of cooking of terrestrial animal produce on PFAS concentrations is lacking, which limits the inference and generalisation of our meta-analysis. However, our work represents the first step towards developing guidelines to reduce PFAS in food via cooking exclusively with common kitchen items and techniques.
显示更多 [+] 显示较少 [-]Marine sponges as coastal bioindicators of rare earth elements bioaccumulation in the French Mediterranean Sea
2022
Orani, Anna Maria | Vassileva, Emilia | Thomas, Olivier P.
In recent years, the widespread use of rare earth elements (REEs) has raised the issue of their harmful effects on the aquatic environment. REEs are now considered as contaminants of emerging concern. Despite the increasing interest of REEs in modern industry, there is still a lack of knowledge on their potential impact on the environment and especially in the marine environment. In this context, the need for monitoring tools to assess REEs pollution status in marine ecosystems is considered as the first step towards their risk assessment. Similar to mussels, filter-feeder sponges have emerged as a key bio-monitor species for marine chemical pollution. Their key position at a low level of the trophic chain makes them suitable model organisms for the study of REEs potential transfer through the aquatic food web. We therefore undertook a comparative study on seven marine sponge species, assessing their capability to bioaccumulate REEs and to potentially transfer these contaminants to higher positions in the trophic chain. A spike experiment under controlled conditions was carried out and the intra- and inter-species variability of REEs was monitored in the sponge bodies by ICP-MS. Concentrations were found to be up to 170 times higher than the corresponding control specimens. The tubular species Aplysina cavernicola showed the highest concentrations among the studied species. This study shows, for the first time, the potential of marine sponges as bio-monitor of REEs as well as their possible application in the bioremediation of polluted sites.
显示更多 [+] 显示较少 [-]Up in smoke: California's greenhouse gas reductions could be wiped out by 2020 wildfires
2022
Jerrett, Michael | Jina, Amir S. | Marlier, Miriam E.
In this short communication, we estimate that California's wildfire carbon dioxide equivalent (CO₂e) emissions from 2020 are approximately two times higher than California's total greenhouse gas (GHG) emission reductions since 2003. Without considering future vegetation regrowth, CO₂e emissions from the 2020 wildfires could be the second most important source in the state above either industry or electrical power generation. Regrowth may partly of fully occur over a long period, but due to exigencies of the climate crisis most of the regrowth will not occur quickly enough to avert greater than 1.5 degrees of warming. Global monetized damages caused by CO₂e from in 2020 wildfire emissions amount to some $7.1 billion USD. Our analysis suggests that significant societal benefits could accrue from larger investments in improved forest management and stricter controls on new development in fire-prone areas at the wildland-urban interface.
显示更多 [+] 显示较少 [-]Soil oxygen depletion and corresponding nitrous oxide production at hot moments in an agricultural soil
2022
Song, Xiaotong | Wei, Huanhuan | Rees, R. M. (Robert M.) | Ju, Xiaotang
Hot moments of nitrous oxide (N₂O) emissions induced by interactions between weather and management make a major contribution to annual N₂O budgets in agricultural soils. The causes of N₂O production during hot moments are not well understood under field conditions, but emerging evidence suggests that short-term fluctuations in soil oxygen (O₂) concentration can be critically important. We conducted high time-resolution field observations of O₂ and N₂O concentrations during hot moments in a dryland agricultural soil in Northern China. Three typical management and weather events, including irrigation (Irr.), fertilization coupled with irrigation (Fer.+Irr.) or with extreme precipitation (Fer.+Pre.), were observed. Soil O₂ and N₂O concentrations were measured hourly for 24 h immediately following events and measured daily for at least one week before and after the events. Soil moisture, temperature, and mineral N were simultaneously measured. Soil O₂ concentrations decreased rapidly within 4 h following irrigation in both the Irr. and Fer.+Irr. events. In the Fer.+Pre. event, soil O₂ depletion did not occur immediately following fertilization but began following subsequent continuous rainfall. The soil O₂ concentration dropped to as low as 0.2% (with the highest soil N₂O concentration of up to 180 ppmv) following the Fer.+Pre. event, but only fell to 11.7% and 13.6% after the Fer.+Irr. and Irr. events, which were associated with soil N₂O concentrations of 27 ppmv and 3 ppmv, respectively. During the hot moments of all three events, soil N₂O concentrations were negatively correlated with soil O₂ concentrations (r = −0.5, P < 0.01), showing a quadratic increase as soil O₂ concentrations declined. Our results provide new understanding of the rapid short response of N₂O production to O₂ dynamics driven by changes in soil environmental factors during hot moments. Such understanding helps improve soil management to avoid transitory O₂ depletion and reduce the risk of N₂O production.
显示更多 [+] 显示较少 [-]Physiological responses of pumpkin to zinc oxide quantum dots and nanoparticles
2022
Xu, Xinxin | Zhao, Chenchen | Qian, Kun | Sun, Min | Hao, Yi | Han, Lanfang | Wang, Cuiping | Ma, Chuanxin | White, Jason C. | Xing, Baoshan
The present study investigated that the potential of soil or foliar applied 15 mg/L zinc oxide quantum dots (ZnO QD, 11.7 nm) to enhance pumpkin (Cucurbita moschata Duch.) growth and biomass in comparison with the equivalent concentrations of other sizes of ZnO particles, ZnO nanoparticles (ZnO NPs, 43.3 nm) and ZnO bulk particles (ZnO BPs, 496.7 nm). In addition, ZnSO4 was used to set a Zn²⁺ ionic control. For foliar exposure, ZnO QD increased dry mass by 56% relative to the controls and values were 17.3% greater than that of the ZnO NPs particles. The cumulative water loss in the ZnO QD treatment was 10% greater than with ZnO NPs, suggesting that QD could better enhance pumpkin growth. For the root exposure, biomass and accumulative water loss equivalent across all Zn treatments. No adverse effects in terms of pigment (chlorophyll and anthocyanin) contents were evident across all Zn types regardless exposure routes. Foliar exposure to ZnO QD caused 40% increases in shoot Zn content as compared to the control; the highest Zn content was evident in the Zn²⁺ ionic treatment, although this did not lead to growth enhancement. In addition, the shoot and root content of other macro- and micro-nutrients were largely equivalent across all the treatments. The contents of other nutritional compounds, including amino acids, total protein and sugar, were also significantly increased by foliar exposure of ZnO QD. The total protein in the ZnO QD was 53% higher than the ZnO particle treatments in the root exposure group. Taken together, our findings suggest that ZnO QDs have significant potential as a novel and sustainable nano-enabled agrichemical and strategies should be developed to optimize benefit conferred to amended crops.
显示更多 [+] 显示较少 [-]Role of the sedimentary organic matter structure and microporosity on the degradation of nonylphenol by potassium ferrate
2022
Zhang, Yongli | Kong, Xianglan | Yang, Yu | Ran, Yong
In this study, the role of organic matter structure and microporosity in the adsorption and degradation of radioactive nonylphenol in sediments treated with potassium ferrate solutions was investigated. The demineralized fractions and acid non-hydrolyzable fractions were isolated and characterized via advanced solid-state ¹³C nuclear magnetic resonance and CO₂ gas adsorption technology, respectively. Radioactive nonylphenol in the sediments was also fractionated into ¹⁴CO₂, water-soluble residues, extractable residues, and strongly bound residues after treatment with potassium ferrate. A first-order, two-compartment kinetic model well described the mineralization and degradation kinetics of radioactive nonylphenol in the sediment (R² > 0.99). The degradation percentages of spiked nonylphenol were highly negatively correlated with aromatic carbon, aliphatic carbon, and microporosity estimated from acid-non-hydrolyzable fractions in the bulk sediments (R² > 0.82, p < 0.01). The percentages of adsorbed parent nonylphenol residues were highly positively correlated with aromatic carbon, aliphatic carbon, and microporosity estimated from acid-non-hydrolyzable fractions in the bulk sediments (R² > 0.90, p < 0.01). The parent nonylphenol compound desorbed into the aqueous phase and was completely degraded. This study is the first to demonstrate the important role of aromatic carbon, aliphatic carbon, and microporosity in acid non-hydrolyzable fractions on the degradation of nonylphenol during the potassium ferrate oxidation treatment process.
显示更多 [+] 显示较少 [-]Prediction of the oxidation potential of PM2.5 exposures from pollutant composition and sources
2022
Shang, Jing | Zhang, Yuanxun | Schauer, James J. | Chen, Sumin | Yang, Shujian | Han, Tingting | Zhang, Dong | Zhang, Jinjian | An, Jianxiong
The inherent oxidation potential (OP) of atmospheric particulate matter has been shown to be an important metric in assessing the biological activity of inhaled particulate matter and is associated with the composition of PM₂.₅. The current study examined the chemical composition of 388 personal PM₂.₅ samples collected from students and guards living in urban and suburban areas of Beijing, and assessed the ability to predict OP from the calculated metrics of carcinogenic risk, represented by ELCR (excess lifetime cancer risk), non-carcinogenic risk represented by HI (hazard index), and the composition and sources of the particulate matter using multiple linear regression methods. The correlations between calculated ELCR and HI and the measured OP were 0.37 and 0.7, respectively. HI was a better predictor of OP than ELCR. The prediction models based on pollutants (Model_1) and pollution sources (Model_2) were constructed by multiple linear regression method, and Pearson correlation coefficients between the predicted results of Model_1 and Model_2 with the measured volume normalized OP are 0.81 and 0.80, showing good prediction ability. Previous investigations in Europe and North America have developed location-specific relationships between the chemical composition of particulate matter and OP using regression methods. We also examined the ability of relationships between OP and composition, sources, developed in Europe and North America, to predict the OP of particulate matter in Beijing from the composition and sources determined in Beijing. The relationships developed in Europe and North America provided good predictive ability in Beijing and it suggests that these relationships can be used to predict OP from the chemical composition measured in other regions of the world.
显示更多 [+] 显示较少 [-]Combined effects of degradable film fragments and micro/nanoplastics on growth of wheat seedling and rhizosphere microbes
2022
Ren, Xinwei | Wang, Lan | Tang, Jingchun | Sun, Hongwen | Giesy, John P.
Multiple sources of microplastics (MPs) in farmland could result in the changing of microbial community and the plant growth. Most studies of MPs in agricultural system have focused on the effects of single types of MPs on growth of plants, while neglect interactions between multiple types of MPs. In this study a pot-experiment was conducted to investigate the effects of multiple types of MPs, including polystyrene beads: M1, 5 μm, M2, 70 nm and degradable mulching film (DMF) fragments on growth of wheat seedlings and associated rhizosphere microbial community. CKD (adding DMF) significantly reduced plant height and base diameter of wheat seedlings. DMF in combination with M2, significantly increased plant height and aboveground biomass, but decreased the base diameter. Actinobacteria was the dominant taxa in the rhizosphere bacterial community in various treatments. PCoA analysis showed that the bacterial composition in M2HD (100 mg kg⁻¹ M² with DMF) was significantly different from that of CKD and M2LD (10 mg kg⁻¹ M² with DMF). At the level of genera, the dominant fungi in CKD and M2LD were in the genus Fusarium, which is the cause of wheat fusarium blight and Alternaria, which results in decreased base diameter. In CK (control group) and M2HD, Blastobotrys exhibited the greatest abundance, which assisted wheat seedlings in resisting Verticillium disease. Cluster and PCoA analysis showed the fungal composition in CKD was significantly different from CK, M2LD and M2HD. These findings suggest MPs potentially have selective effects on pathogens that affect growth of plants and potentially safety of the food.
显示更多 [+] 显示较少 [-]Multiresistant bacteria: Invisible enemies of freshwater mussels
2022
Saavedra, Maria José | Fernandes, Conceição | Teixeira, Amílcar | Álvarez, Xana | Varandas, Simone
Freshwater mussels are among the most endangered groups of fauna anywhere in world. The indiscriminate use of antibiotics has led to the emergence of resistant strains. These antibiotic-resistant bacteria play a key role in increasing the risk allied with the use of surface water and in spread of resistance genes. Two endangered freshwater mussel species, Margaritifera margaritifera and Potomida littoralis, were sampled at 4 sampling sites along a 50 km stretch of River Tua. Water samples were taken at same sites. Of the total of 135 isolates, 64.44% (39.26% from water and 25.19% from mussels) were coliform bacteria. Site T1, with the lowest concentration of coliform bacteria, and site T2 were the only ones where M. margaritifera was found. No E. coli isolates were found in this species and the pattern between water and mussels was similar. P. littoralis, which was present at T3/T4 sites, is the one that faces the highest concentration of bacterial toxins, which are found in treated wastewater effluents and around population centers. Sites T3/T4 have the isolates (water and mussels) with the highest resistance pattern, mainly to β-lactams. Water and P. littoralis isolates (T3/T4) showed resistance to penicillins and their combination with clavulanic acid, and to cephalosporins, precisely to a fourth generation of cephalosporin antibiotics. The analysis provides important information on the risk to water systems, as well as the need to investigate possible management measures. It is suggested that future studies on the health status of freshwater bivalves should incorporate measures to indicate bacteriological water quality.
显示更多 [+] 显示较少 [-]A miniaturized electrothermal array for rapid analysis of temperature preference behaviors in ecology and ecotoxicology
2022
Henry, Jason | Bai, Yutao | Kreuder, Florian | Saaristo, Minna | Kaslin, Jan | Wlodkowic, Donald
Due to technical limitations, there have been minimal studies performed on thermal preferences and thermotactic behaviors of aquatic ectotherm species commonly used in ecotoxicity testing. In this work, we demonstrate an innovative, purpose-built and miniaturized electrothermal array for rapid thermal preference behavioral tests. We applied the novel platform to define thermal preferences in multiple invertebrate and vertebrate species. Specifically, Dugesia notogaea (freshwater planarians), Chironomus tepperi (nonbiting midge larvae), Ostracoda (seed shrimp), Artemia franciscana (brine shrimp), Daphnia carinata (water flea), Austrochiltonia subtenuis (freshwater amphipod), Physa acuta (freshwater snail), Potamopyrgus antipodarum (New Zealand mud snail) and larval stage of Danio rerio (zebrafish) were tested. The Australian freshwater water fleas, amphipods, snail Physa acuta as well as zebrafish exhibited the most consistent preference to cool zones and clear avoidance of zones >27 °C out of nine species tested. Our results indicate the larval stage of zebrafish as the most responsive species highly suitable for prospective development of multidimensional behavioral test batteries. We also showcase preliminary data that environmentally relevant concentrations of pharmaceutical pollutants such as non-steroidal anti-inflammatory drug (NSAID) ibuprofen (9800 ng/L) and insecticide imidacloprid (4600 ng/L) but not anti-depressant venlafaxine (2200 ng/L) and (iv) anticonvulsant medications gabapentin (400 ng/L) can perturb thermal preference behavior of larval zebrafish. Collectively our results demonstrate the utility of simple and inexpensive thermoelectric technology in rapid exploration of thermal preference in diverse species of aquatic animals. We postulate that more broadly such technologies can also have added value in ecotoxicity testing of emerging contaminants.
显示更多 [+] 显示较少 [-]