细化搜索
结果 431-440 的 7,203
Development of physiologically-based toxicokinetic-toxicodynamic (PBTK-TD) model for 4-nonylphenol (4-NP) reflecting physiological changes according to age in males: Application as a new risk assessment tool with a focus on toxicodynamics 全文
2022
Jeong, Seung-Hyun | Jang, Ji-Hun | Lee, Yong-Bok
Environmental exposure to 4-nonylphenol (4-NP) is extensive, and studies related to human risk assessment must continue. Especially, prediction of toxicodynamics (TDs) related to reproductive toxicity in males is very important in risk-level assessment and management of 4-NP. This study aimed to develop a physiologically-based-toxicokinetic-toxicodynamic (PBTK-TD) model that added a TD prostate model to the previously reported 4-n-nonylphenol (4-n-NP) physiologically-based-pharmacokinetic (PBPK) model. Modeling was performed under the assumption of similar TKs between 4-n-NP and 4-NP because TK experiments on 4-NP, a random-mixture, are practically difficult. This study was very important to quantitatively predict the TKs and TDs of 4-NP by age at exposure using an advanced PBTK-TD model that reflected physiological-changes according to age. TD-modeling was performed based on the reported toxic effects of 4-NP on RWPE-1 cells, a human-prostate-epithelial-cell-line. Through a meta-analysis of reported human physiological data, body weight, tissue volume, and blood flow rate patterns according to age were mathematically modeled. These relationships were reflected in the PBTK-TD model for 4-NP so that the 4-NP TK and TD changes according to age and their differences could be confirmed. Differences in TK and TD parameters of 4-NP at various ages were not large, within 3.61-fold. Point-of-departure (POD) and reference-doses for each age estimated using the model varied as 426.37–795.24 and 42.64–79.52 μg/kg/day, but the differences (in POD or reference doses between ages) were not large, at less than 1.87-times. The PBTK-TD model simulation predicted that even a 100-fold 4-NP PODₘₐₙ dose would not have large toxicity to the prostate. With a focus on TDs, the predicted maximum possible exposure of 4-NP was as high as 6.06–23.60 mg/kg/day. Several toxicity-related values estimated by the dose-response curve were higher than those calculated, depending upon the PK or TK, which would be useful as a new exposure limit for prostate toxicity of 4-NP.
显示更多 [+] 显示较少 [-]Catalytic hydrogenolysis of plastic to liquid hydrocarbons over a nickel-based catalyst 全文
2022
Zhao, Zhigang | Li, Zheng | Zhang, Xiangkun | Li, Tan | Li, Yuqing | Chen, Xingkun | Wang, Kaige
The catalytic hydrogenolysis of a typical model compound of mulching film waste, polyethylene, was investigated as a potential way to improve economic efficiency of mulching film recycling. Nickel-based heterogeneous catalysts are proposed for polyethylene hydrogenolysis to produce liquid hydrocarbons. Among catalysts supported on various carriers, Ni/SiO₂ catalyst shows the highest activity which may due to the interactions between nickel and silica with the formation of nickel phyllosilicate. As high as 81.18% total gasoline and diesel range hydrocarbon was obtained from the polyethylene hydrogenolysis at relatively mild condition of 280 °C, and 3 MPa cold hydrogen pressure. The result is comparable to what have been reported in previous studies using noble metal catalysts. The gasoline and diesel range hydrocarbon are n-alkanes with a distribution at a range of C₄–C₂₂. The gas products are primarily CH₄ along with a small amount of C₂H₆ and C₃H₈. High yield of CH₄ as much as 9.68% was observed for the cleavage of molecule occurs along the alkane chain.
显示更多 [+] 显示较少 [-]Distribution of florfenicol and norfloxacin in ice during water freezing process: Dual effects by fluorine substituents 全文
2022
Sun, Heyang | Chen, Tianyi | Zhang, Liwen | Dong, Deming | Li, Yanchun | Guo, Zhiyong
Distribution in ice is regarded as one of important transport modes for pollutants in seasonal freeze-up waters in cold regions. However, the distribution characteristics and mechanisms of fluorinated antibiotics as emerging contaminants during the water freezing process remain unclear. Here, florfenicol and norfloxacin were selected as model fluorinated antibiotics to investigate their ice-water distribution. Effects of antibiotic molecular structure on the distribution were explored through comparative studies with their non-fluorinated structural analogs. Results showed that phase changes during the ice growth process redistributed the antibiotics, with antibiotic concentrations in water 3.0–6.4 times higher than those in ice. The solute-rich boundary layer with a concentration gradient was presented at the ice-water interface and controlled by constitutional supercooling during the freezing process. The ice-water distribution coefficient (KIW) values of antibiotics increased by 34.8%–38.0% with a doubling of the cooling area. The solute distribution coefficient (Kbₛ) values of antibiotics at −20 °C were 65.6%–70.3% higher than at −10 °C. The KIW and Kbₛ values of all antibiotics were negatively correlated with their water solubilities. The fluorine substituents influenced the binding energies between antibiotics and ice, resulting in a 1.1-fold increase in the binding energy of norfloxacin on the ice surface relative to its structural analog pipemidic acid. The results provide a new insight into the transport behaviors of fluorinated pharmaceuticals in ice-water systems.
显示更多 [+] 显示较少 [-]An iron-biochar composite from co-pyrolysis of incinerated sewage sludge ash and peanut shell for arsenic removal: Role of silica 全文
2022
Wang, Qiming | Li, Jiang-shan | Poon, C. S. (Chi-sun)
Modification of biochar by low-cost iron sources has gained increasing attention to improve pollutants removal performance and reduce production costs compared to conventional chemical modifications. While such iron sources generally have complex compositions, their effects on properties of the iron-biochar composite are not well investigated. This study produced an iron-biochar (RBC) composite from co-pyrolysis of incinerated sewage sludge ash (ISSA) and peanut shell, and examined the role of silica with widespread existence in ISSA and other low-cost iron sources on properties of the iron-biochar composite relevant to As(III)/As(V) removal. Silica was found to react with iron during the pyrolysis process at 850 °C and formed iron silicon at the expense of producing zero valent iron and Fe₃O₄ which resulted in a poorer removal efficacy for As(III) and As(V) compared to the iron-biochar (FBC) made from pure Fe₂O₃ and peanut shell. Moreover, a high leaching of reactive silica from RBC was observed which affected the formation of corrosion products of ZVI and competed with arsenic for active adsorption sites. Despite this, RBC still exhibited a maximum adsorption capacity of 17.44 and 57.56 mg/g towards As(III) and As(V) respectively at pH 3.0. Overall, this study provides an interesting insight into upcycling ISSA into useful media for sorptive removal of arsenic from aqueous solutions.
显示更多 [+] 显示较少 [-]Microbial interactions enhanced environmental fitness and expanded ecological niches under dibutyl phthalate and cadmium co-contamination 全文
2022
Wang, Xuejun | Wu, Hao | Dai, Chuhan | Wang, Xiaoyu | Wang, Lvjing | Xu, Jianming | Lu, Zhenmei
Co-contamination of organic pollutants and heavy metals is universal in the natural environment. Dibutyl phthalate (DBP), a typical plasticizer, frequently coexists with cadmium (Cd) in nature. However, little attention has been given to the impacts of co-contamination by DBP and Cd on microbial communities or the responses of microbes. To address this, a microcosm experiment was conducted by supplying the exogenous DBP-degrading bacterium Glutamicibacter nicotianae ZM05 to investigate the interplay among DBP-Cd co-contamination, the exogenous DBP-degrading bacterium G. nicotianae ZM05, and indigenous microorganisms. To adapt to co-contamination stress, microbial communities adjust their diversity, interactions, and functions. The stability of the microbial community decreased under co-contamination, as evidenced by lower diversity, simpler network, and fewer ecological niches. Microbial interactions were strengthened, as evidenced by enriched pathways related to microbial communications. Meanwhile, interactions between microorganisms enhanced the environmental fitness of the exogenous DBP-degrading bacterium ZM05. Based on co-occurrence network prediction and coculture experiments, metabolic interactions between the non-DBP-degrading bacterium Cupriavidus metallidurans ZM16 and ZM05 were proven. Strain ZM16 utilized protocatechuic acid, a DBP downstream metabolite, to relieve acid inhibition and adsorbed Cd to relieve toxic stress. These findings help to explain the responses of bacterial and fungal communities to DBP-Cd co-contamination and provide new insights for the construction of degrading consortia for bioremediation.
显示更多 [+] 显示较少 [-]Identification of novel polyfluoroalkyl substances in surface water runoff from a chemical stockpile fire 全文
2022
Rana, Sahil | Marchiandi, Jaye | Partington, Jordan M. | Szabo, Drew | Heffernan, Amy L. | Symons, Robert K. | Xie, Shay | Clarke, Bradley O.
In 2018, over 30,000 L of fluorine-free firefighting foam was used to extinguish an industrial warehouse fire of uncharacterized chemical and industrial waste. Contaminated firewater and runoff were discharged to an adjacent freshwater creek in Melbourne, Australia. In this study, we applied nontarget analysis using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS) to 15 surface water samples to investigate the presence of legacy, novel and emerging per-and polyfluoroalkyl substances (PFAS). We identified six novel and emerging fluorotelomer-based fluorosurfactants in the Australian environment for the first time, including: fluorotelomer sulfonamido betaines (FTABs or FTSA-PrB), fluorotelomer thioether amido sulfonic acids (FTSASs), and fluorotelomer sulfonyl amido sulfonic acids (FTSAS-So). Legacy PFAS including C₆–C₈ perfluoroalkyl sulfonic acids, C₄–C₁₀ perfluoroalkyl carboxylic acids, and perfluoro-4-ethylcyclohexanesulfonate were also detected in surface water. Of note, we report the first environmental detection of ethyl 2-ethenyl-2-fluoro-1-(trifluoromethyl) cyclopropane-1-carboxylate. Analysis of several Class B certified fluorine-free foam formulations allowed for use in Australia revealed that there was no detectable PFAS. Patterns in the homologue profiles of fluorotelomers detected in surface water are consistent with environments impacted by fluorinated aqueous film-forming foams. These results provide strong evidence that firewater runoff of stockpiled fluorinated firefighting foam was the dominant source of detectable PFAS to the surrounding environment.
显示更多 [+] 显示较少 [-]Citric acid modified biochar application at a low dosage can synchronically mitigate the nitrogenous gas pollutants emission from rice paddy soils 全文
2022
Sun, Haijun | Yi, Zhenghua | Jeyakumar, Paramsothy | Xia, Changlei | Feng, Yanfang | Lam, Su Shiung | Sonne, Christian | Wang, Hailong | Shi, Weiming
Raw biochar with high pH possibly stimulated ammonia (NH₃) volatilization in the agricultural soil. We hypothesized that the modified biochar (MBC) with low pH can synchronically decrease the NH₃ and nitrous oxide (N₂O) losses. We performed a two-year experiment to clarify how citric acid MBC influence the NH₃ volatilization and N₂O emission as well as the underlying mechanisms. Two typical paddy soils, i.e., Hydragric Anthrosol and Haplic Acrisol, receiving equal urea N with 240 kg ha⁻¹ but varied rates of MBC with 0, 5, 10, and 20 t ha⁻¹ (named Urea, Urea + MBC5, Urea + MBC10, and Urea + MBC20, respectively) were studied. The results showed that MBC-amended treatments effectively mitigated the NH₃ volatilization from Hydragric Anthrosol and Haplic Acrisol by 29.6%–57.9% and 30.5%–62.4% in 2017, and by 16.5%–21.0% and 24.5%–35.0% in 2018, respectively, compared to Urea treatment. In addition, significantly lower N₂O emissions with averaged 38.3% and 43.1% in 2017, and 51.7% and 26.7% were recorded under Hydragric Anthrosol and Haplic Acrisol, respectively, following the MBC application (P < 0.05). Increased MBC addition performed higher efficacy on mitigating NH₃ volatilization, particularly in the first rice season, while this “dosage effect” was not found for N₂O reduction. Lowered pH in overlying water, enhanced adsorption of NH₄⁺-N and its nitrification rate likely contributed to the lower NH₃ volatilization as result of MBC addition. The nirS and nosZ gene copies were not changed by MBC, while the nirK gene copies were decreased as result of MBC amendment by 8.3%–25.2% under Hydragric Anthrosol and by 21.8%–24.9% under Haplic Acrisol. Consequent lower ratio of nirK/(nirS + nosZ) explained the mitigation effect of MBC on N₂O emission. In conclusion, the present two-year study recommends that MBC applied at a low dosage can perform positive effect on controlling the nitrogenous gas pollutants from paddy soil.
显示更多 [+] 显示较少 [-]Exposure to metal mixtures and hypertensive disorders of pregnancy: A nested case-control study in China 全文
2022
Ma, Jiaolong | Zhang, Hongling | Zheng, Tongzhang | Zhang, Wenxin | Yang, Chenhui | Yu, Ling | Sun, Xiaojie | Xia, Wei | Xu, Shunqing | Li, Yuanyuan
Exposure to metals has been linked with the risk of hypertensive disorders of pregnancy (HDP), but little is known about the potential effects of exposure to metal mixtures. Thus, our study aimed to investigated the impact of a complex mixture of metals on HDP, especially the interactions among metal mixtures. We did a population-based nested case-control study from October 2013 to October 2016 in Wuhan, China, including 146 HDP cases and 292 controls. Plasma concentrations of Aluminum (Al), Barium (Ba), Cobalt (Co), Copper (Cu), Lead (Pb), Mercury (Hg), Molybdenum (Mo), Nickel (Ni), Selenium (Se), Strontium (Sr), Thallium (Tl), and Vanadium (V) were measured and collected between 10 and 16 gestational weeks. We employed quantile g-computation, conditional logistic regression models, and Bayesian Kernel Machine Regression (BKMR) to assess the association of individual metals and metal mixtures with HDP risk. In the quantile g-computation, the OR for a joint tertile increase in plasma concentrations was 3.67 (95% CI: 1.70, 7.91). Hg contributed the largest positive weights and followed by Al, Ni, and V. In conditional logistic regression models, concentrations of Hg, Al, Ni, and V were significantly associated with the risk of HDP (p-FDR < 0.05). Compared to the lowest tertiles, the ORs (95% CI) for the highest tertiles of these four metals were 2.67 (1.44, 4.95), 3.09 (1.70, 5.64), 5.31 (2.68, 10.53), and 4.52 (2.26, 9.01), respectively. In the BKMR analysis, we observed a linear positive association between Hg, Al, V, and HDP, and a nonlinear relationship between Ni and HDP. A potential interaction between Al and V was also identified. We found that exposure to metal mixtures in early pregnancy, both individually and as a mixture, was associated with the risk of HDP. Potential interaction effects of Al and V on the risk of HDP may exist.
显示更多 [+] 显示较少 [-]Exposure to perfluoroalkyl substances and neonatal immunoglobulin profiles in the upstate KIDS study (2008–2010) 全文
2022
Jones, Laura E. | Ghassabian, Akhgar | Lawrence, David A. | Sundaram, Rajeshwari | Yeung, Edwina | Kannan, Kurunthachalam | Bell, Erin M.
Infant exposure to per/polyfluoroalkyl compounds is associated with immune disruption. We examined associations between neonatal concentrations of perflurooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) and immunoglobulin (Ig) isotype profiles in a prospective cohort of infants. We measured Ig isotypes, including IgA, IgE, IgM and the IgG subclasses IgG₁, IgG₂, IgG₃, and IgG₄, and PFOA and PFOS in newborn dried bloodspots from N = 3175 infants in the Upstate KIDS Study (2008–2010). We examined the association between newborn Ig isotype levels and individual PFOS and PFOA concentrations using mixed effects regression models with a random intercept to account for twins among study participants. We assessed the joint effect PFOA and PFOS with quantile-based g-computation on all singletons and one randomly selected twin (N = 2901), with Ig categorized as above or below median value. Models were adjusted for infant sex, and maternal pre-pregnancy body mass index, race, parity, age and infertility treatment. In adjusted models, PFOA was inversely associated with IgE (coefficient = −0.12 per unit increase in PFOA, 95% CI: −0.065, −0.17), whereas IgG₂, IgM, and IgA were positively associated with PFOA (coefficient for IgG₂ = 0.22, 95% CI: 0.15, 0.27; coefficient for IgM = 0.11, 95% CI: 0.08, 0.15; and coefficient for IgA = 0.15, 95% CI: 0.07, 0.18). There was no relation between PFOS and Ig isotypes. Analysis of the joint effect of PFOA and PFOS showed an OR of 1.2 (95% CI: 1.04, 1.36) for IgA and OR of 1.12 (95% CI: 1.00, 1.24) for IgG₂ levels above the median for every quartile increase. PFOA levels were significantly associated with elevated IgA, IgM, IgG₂, and reduced levels of IgE in single-pollutant models. A small but significant joint effect of PFOA and PFOS was observed. Our results suggest that early exposure to PFOA and PFOS may disrupt neonatal immunoglobulin levels.
显示更多 [+] 显示较少 [-]H3PO4 activation mediated the iron phase transformation and enhanced the removal of bisphenol A on iron carbide-loaded activated biochar 全文
2022
Zhao, Nan | Liu, Kunyuan | He, Chao | Zhao, Dongye | Zhu, Ling | Zhao, Chuanfang | Zhang, Weihua | Oh, Wen-Da | Zhang, Weixian | Qiu, Rongliang
Zero valent iron-loaded biochar (Fe⁰-BC) has shown promise for the removal of various organic pollutants, but is restricted by reduced specific surface area, low utilization efficiency and limited production of reactive oxygen species (ROS). In this study, iron carbide-loaded activated biochar (Fe₃C-AB) with a high surface area was synthesized through the pyrolysis of H₃PO₄ activated biochar with Fe(NO₃)₃, tested for removing bisphenol A (BPA) and elucidated the adsorption and degradation mechanisms. As a result, H₃PO₄ activated biochar was beneficial for the transformation of Fe⁰ to Fe₃C. Fe₃C-AB exhibited a significantly higher removal rate and removal capacity for BPA than that of Fe⁰-BC within a wide pH range of 5.0–11.0, and its performance was maintained even under extremely high salinity and different water sources. Moreover, X-ray photoelectron spectra and density functional theory calculations confirmed that hydrogen bonds were formed between the COOH groups and BPA. ¹O₂ was the major reactive species, constituting 37.0% of the removal efficiency in the degradation of BPA by Fe₃C-AB. Density functional reactivity theory showed that degradation pathway 2 of BPA was preferentially attacked by ROS. Thus, Fe₃C-AB with low cost and excellent recycling performance could be an alternative candidate for the efficient removal of contaminants.
显示更多 [+] 显示较少 [-]