细化搜索
结果 441-450 的 4,929
Observational study of aerosol-induced impact on planetary boundary layer based on lidar and sunphotometer in Beijing
2019
Wang, Haofei | Li, Zhengqiang | Lv, Yang | Xu, Hua | Li, Kaitao | Li, Donghui | Hou, Weizhen | Zheng, Fengxun | Wei, Yuanyuan | Ge, Bangyu
Atmospheric aerosols have been found to influence the development of planetary boundary layer (PBL) and hence to aggravate haze pollution in megacities. PBL height (PBLH) determines the vertical extent to which the most pollutant effectively disperses and is a key argument in pollution study. In this study, we quantitatively evaluate aerosol radiation effect on PBL, as well as assessment of surface cooling effect and atmosphere heating effect. All the data are measured at a site of Beijing from 2014 to 2017, of which PBLH is retrieved from micro pulse lidar and aerosol optical depth (AOD) from sunphotometer. Case study shows qualitatively that relative high aerosol load reduces PBLH, and in turn causes a high surface PM₂.₅ concentration. We preliminarily reveal the influential mechanism of aerosol on PBL. The influence of aerosol on the radiation flux of PBL is analyzed, with the correlation coefficient (R) of 0.938 between AOD and radiative forcing of BOA (RFBOA) and R = 0.43 between RFBOA and PBLH. Also, AOD is found to negatively correlate with PBLH (R = −0.41). With the increase of AOD, the cooling effect of surface is enhanced, and further impede the development of PBL. Due to aerosol-induced reduction of PBLH, near surface PM₂.₅ concentration surges and presents an exponential growth following AOD. Then, it is speculated and testified that the relationship between SSA (single scatting albedo) and PBLH would be determined by the location of absorbing aerosol within PBL. The upper PBL absorbing aerosol may decrease PBLH, while the lower absorbing aerosol appear to enhance PBLH. The study probably can provide effective observational evidence for understanding the effect of aerosol on PBL and be a reference of air pollution mitigation in Beijing and its surrounding areas.
显示更多 [+] 显示较少 [-]Contribution of plant species to the high N retention capacity of a subalpine meadow undergoing elevated N deposition and warming
2019
Pornon, André | Boutin, Marion | Lamaze, Thierry
While numerous studies have examined the effect of N deposition on ecosystem N retention, few have analyzed the involvement of plant species and climate warming in this process. We experimentally investigated the effects of increasing N deposition (Nexo) and climate warming on the fate of Nexo in a subalpine meadow and established the involvement of plant species. Using 15N tracer, we tracked Nexo sprayed on the vegetation in belowground and aboveground plant biomasses (AGB) and in bulk soil over three growing seasons. We assessed the Nexo absorption capacity of plant species and the contribution of Nexo to their AGB N pool. The meadow retained a large proportion of Nexo (≈65%, mostly in AGB) for depositions up to four times the background N rate. Nexo present in the meadow compartments in year 2 was still present in year 3, suggesting that the ecosystem was unsaturated after three years of high N input. Nexo retention resulted more from an increase in N concentration in plant tissues than from the increase in AGB. The species-specific Nexo absorption capacity was inversely related to their AGB N concentration. Nexo accounted for up to 40% of total AGB N depending on the species and the N treatments. The contribution of species to ecosystem Nexo retention more contingent on their AGB than on their relative cover in the community, ranked as follows: C. vulgaris (14.0%) > N. stricta (7.0%) > other Poaceae = C. caryophyllea (2.5%) > other Eudicotyledons (1.5%) > non-vascular species = P. erecta > Fabaceae (0.8–0.2%). Climate warming increased AGB and decreased tissue N concentration. No warming-Nexo interaction was observed. Thus, Pyrenean subalpine meadows that have not undergone a decline in plant species richness in recent decades paradoxically display a high potential to sequester atmospheric N deposition.
显示更多 [+] 显示较少 [-]Brominated and organophosphorus flame retardants in South African indoor dust and cat hair
2019
Brits, Martin | Brandsma, Sicco H. | Rohwer, Egmont R. | De Vos, Jayne | Weiss, Jana M. | Boer, Jacob de
Flame retardants (FRs), such as brominated flame retardants (BFRs) and organophosphorus flame retardants (OPFRs), are diverse groups of compounds used in various products related to the indoor environment. In this study concentrations of eight polybrominated diphenyl ethers (PBDEs), two alternative BFRs and ten OPFRs were determined in indoor dust (n = 20) and pet cat hair (n = 11) from South Africa. The OPFRs were the major FRs, contributing to more than 97% of the total FR concentration. The median Ʃ₁₀OPFRs concentrations were 44,800 ng/g in freshly collected dust (F-dust), 19,800 ng/g in the dust collected from vacuum cleaner bags (V-dust), and 865 ng/g in cat hair (C-hair). Tris(1-chloro-2-propyl) phosphate (TCIPP) was the dominant OPFR in the dust samples with median concentrations of 7,010 ng/g in F-dust and 3,590 ng/g in V-dust. Tris(2-butoxyethyl) phosphate (TBOEP) was the dominant OPFR in C-hair, with a median concentration of 387 ng/g. The concentrations of Ʃ₈PBDEs were higher in F-dust than in V-dust. BDE209 was the dominant BFR in all three matrices. Bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (BEH-TEBP) and 2-ethylhexyl-2,3,4,5- tetrabromobenzoate (EH-TBB) showed notable contributions to the BFR profile in cat hair. A worst-case dust exposure estimation was performed for all analytes. The estimated TCIPP daily intake through dust ingestion was up to 1,240 ng/kg bw for toddlers. The results indicate that OPFRs are ubiquitous in South African indoor environment. Indoor dust is a major source of human exposure to environmental contaminants. This can for example occur through hand-to-mouth contact of toddlers, and is an important route of exposure to currently used FRs accumulated on dust particles. The presence of FRs, in particular high concentrations of OPFRs, suggests that children and indoor pet cats may have greater exposure to FRs than adults.
显示更多 [+] 显示较少 [-]A review of graphene-based nanomaterials for removal of antibiotics from aqueous environments
2019
Wang, Xuandong | Yin, Renli | Zeng, Lixi | Zhu, Mingshan
Antibiotics as emerging pharmaceutical pollutants have seriously not only threatened human life and animal health security, but also caused environmental pollution. It has drawn enormous attention and research interests in the study of antibiotics removal from aqueous environments. Graphene, an interesting one-atom-thick, 2D single-layer carbon sheet with sp² hybridized carbon atoms, has become an important agent for removal of antibiotic, owing to its unique physiochemical properties. Recently, a variety of graphene-based nanomaterials (GNMs) are reported to efficiently remove antibiotics from aqueous solutions by different technologies. In this review, we summarize different structure and properties of GNMs for the removal of antibiotics by adsorption. Meanwhile, advanced oxidation processes (AOPs), such as photocatalysis, Fenton process, ozonation, sulfate radical and combined AOPs by the aid of GNMs are summarized. Finally, the opportunities and challenges on the future scope of GNMs for removal of antibiotics from aqueous environments are proposed.
显示更多 [+] 显示较少 [-]Geochemical exposure of heavy metals in environmental samples from the vicinity of old gas mining area in northern part of Sindh Pakistan. Adverse impact on children
2019
Shaikh, Rafia | Kazi, Tasneem Gul | Afridi, Hassan Imran | Akhtar, Asma | Baig, Jameel Ahmed | Arain, Mohammad Balal
In early nineteen century, a gas field was operational in southern part of Sindh, Pakistan for power production. The plant was completely un-operational for last three decades, whereas all wastage and raw materials are still dumped there, which might be the source to contaminate the ground water. The most of the workers population still living in different villages nearby the gas field. In present study, evaluated the undesirable effects of the toxic metals (lead and cadmium) via consuming groundwater for drinking and other domestic purpose especially in children of ≤5.0 years. For comparative purpose groundwater of nonindustrial area (nonexposed) was also analysed and their impact on age matched children was carried out. Biological samples (scalp hair and blood) were collected from children of exposed and nonexposed areas. The Cd and Pb in scalp hair and blood samples were carried out by graphite furnace atomic absorption spectrometry. Whereas, Cd and Pb in groundwater obtained from both areas were determined prior to applied preconcentration method as reported in our previous works. The Cd and Pb contents in the groundwater of villages of exposed area were found in the range of 5.18–10.9 and 19.9–69.5 μg/L, respectively. Whereas, the groundwater of nonexposed area contains Cd and Pb in the range of 1.79–3.78 and 5.07–24.3 μg/L, respectively. It was observed that the concentrations of Cd and Pb in scalp hair and blood samples of children belongs to exposed area have ≥2.0 fold higher than the resulted data attained for age matched control children, indicating as the exposure biomarkers of toxic metals. The children belong to exposed area have poor health, anemic and low body mass index (<13 kg/m2). A significant positive correlations among Cd and Pb concentrations in biological samples of exposed subjects and groundwater was observed (p < 0.01).
显示更多 [+] 显示较少 [-]Contributions of artifactual materials to the toxicity of anthropogenic soils and street dusts in a highly urbanized terrain
2019
Howard, Jeffrey | Weyhrauch, Jonathan | Loriaux, Glenn | Schultz, Brandy | Baskaran, Mark
A study was undertaken to test the hypothesis that the presence of fly ash and other artifactual materials (AMs) significantly increases the toxicity of urban soil and street dust. AMs were distinguished as artifacts (artificial particles > 2 mm in size), and particulate artifacts (≤2 mm in size); street dust was the <63 μm fraction of street sediments. Reference artifacts, street dusts, and topsoils representing different land use types in Detroit, Michigan were analyzed for miscellaneous radionuclides, trace elements, magnetic susceptibility (MS), and acetic acid-extractable (leachable) Pb. Background levels were established using native glacial sediments. Street sediments were found to have a roadside provenance, hence street dusts inherited their contamination primarily from local soils. All soils and dusts had radionuclide concentrations similar to background levels, and radiological hazard indices within the safe range. Artifacts, fly ash-impacted soils and street dusts contained elevated concentrations of toxic trace elements, which varied with land use type, but none produced a significant amount of leachable Pb. It is inferred that toxic elements in AMs are not bioavailable because they are occluded within highly insoluble materials. Hence, these results do not support our hypothesis. Rather, AMs contribute to artificially-elevated total concentrations leading to an overestimation of toxicity. MS increased with increasing total concentration, hence proximal sensing can be used to map contamination level, but the weak correlation between total and leachable Pb suggests that such maps do not necessarily indicate the associated biohazard. Home site soils with total Pb concentrations >500 mg kg−1 were sporadically toxic. Thus, these results argue against street dust as the local cause of seasonally elevated blood-Pb levels in children. Lead-bearing home site soil tracked directly indoors to form house dust is an alternative exposure pathway.
显示更多 [+] 显示较少 [-]Occurrence of organophosphate flame retardants in farmland soils from Northern China: Primary source analysis and risk assessment
2019
Ji, Yan | Wang, Yu | Yao, Yiming | Ren, Chao | Lan, Zhonghui | Fang, Xiangguang | Zhang, Kai | Sun, Weijie | Alder, Alfredo C. | Sun, Hongwen
Ninety-eight soil samples were collected from farmland soils from Beijing-Tianjin-Hebei core area, Northern China, where agricultural lands were subjected to contamination from intense urban and industrial activities. Twelve organophosphates flame retardants (OPFRs) were analyzed with total soil concentrations ranging from 0.543 μg/kg to 54.9 μg/kg. Chlorinated OPFRs were dominating at mean level of 3.64 μg/kg and Tris(2-chloroisopropyl) phosphate contributed the most (mean 3.36 ± 5.61 μg/kg, 98.0%). Tris(2-ethylhexyl) phosphate was fully detected at levels of 0.041–1.95 μg/kg. Generally, tris(2-butoxyethyl) phosphate and triphenyl phosphate contributed the most to alkyl- (53.6%) and aryl-OPFRs (54.3%), respectively. The levels of ∑OPFRs close to the core urban areas were significantly higher than those from background sites. The occurrence and fate of OPFRs in soil were significantly associated with total organic carbon content and mostly with fine soil particles (<0.005 mm), and a transfer potential from the atmosphere was predicted with logKSA values. Comparable soil levels with poly brominated diphenyl ethers s in other studies suggested that the contamination of OPFRs occurred in farmland soil with an increasing trend but currently showed no significant environmental risk based on risk quotient estimation (<1). This investigation warrants further study on behaviors of OPFRs in a soil system and a continual monitoring for their risk assessment.
显示更多 [+] 显示较少 [-]Mechanisms and uncertainties of Zn supply on regulating rice Cd uptake
2019
Cai, Yimin | Xu, Weibiao | Wang, Meie | Chen, Weiping | Li, Xuzhi | Li, Yonghui | Cai, Yaohui
Application of Zinc (Zn) is considered an effective measure to reduce Cadmium (Cd) uptake and toxicity in Cd-contaminated soils for many plant species. However, interaction between Zn and Cd in rice plant is complex and uncertain. In this study, four indica rice cultivars were selected to evaluate the effect of Zn exposure in an EGTA-buffered nutrient solution under varying Zn activities and a field level of Cd activity to characterize the interaction between Zn and Cd in rice. Severe depression in shoots’ biomass, tiller number, and SPAD (Soil and Plant Analyzer Development) value were found at both Zn deficiency and Zn phytotoxicity levels among four tested rice cultivars. There existed a strong antagonism interaction between Zn and Cd in both shoot and root from Zn deficiency to Zn phytotoxicity. The reduction of Cd accumulation in roots and shoots could be explained by the competition between Zn and Cd as well as the dilution effect of increasing biomass. The conflicting effect of Zn supply on Cd uptake may be attributed to the increasing transfer ratio of Cd from root to shoot with the increasing Zn²⁺ activities and the strong depression of Fe and Mn in shoots with the increasing Zn²⁺ activities as well as the variation of genotypes. Balance between Zn and Cd should be considered in field application.
显示更多 [+] 显示较少 [-]Oxidative stress in the galaxiid fish, Galaxias maculatus, exposed to binary waterborne mixtures of the pro-oxidant cadmium and the anti-oxidant diclofenac
2019
McRae, Nicole K. | Gaw, Sally | Brooks, Bryan W. | Glover, Chris N.
Chemical mixtures represent environmentally-realistic exposures of contaminants to aquatic biota. However, there remains a limited understanding of how toxicant mixtures may impact biological function, relative to their individual components. In the current study, oxidative stress responses of the freshwater galaxiid fish inanga (Galaxias maculatus) were examined following exposure to the pro-oxidant trace metal cadmium (2 or 9 μg L⁻¹), and the anti-oxidant pharmaceutical drug diclofenac (770 μg L⁻¹), individually or in simple binary mixtures. Cadmium exposure in the absence of diclofenac significantly decreased renal catalase activity, increased hepatic catalase activity, decreased renal superoxide dismutase (SOD) and decreased glutathione-S-transferase activity, effects that are suggestive of anti-oxidant defense inhibition and/or generation of increased reactive oxygen species. Diclofenac exposure in the absence of cadmium resulted in a decreased renal lipid peroxidation, consistent with its known anti-oxidant properties. The presence of waterborne diclofenac altered the effects of cadmium on catalase activity in the liver, SOD activity in the gill, and lipid peroxidation in the liver. Co-exposure with cadmium modulated diclofenac effects on lipid peroxidation in the kidney. These data indicate the capacity of each of these toxicants to offset biological effects of the other when both co-occur in urban waters at specific concentrations. This study also demonstrates the complexity of outcomes in contaminant mixtures, even when these stressors are presented as simple binary combinations.
显示更多 [+] 显示较少 [-]Mechanism of Cu(II) and Cd(II) immobilization by extracellular polymeric substances (Escherichia coli) on variable charge soils
2019
Nkoh, Jackson Nkoh | Xu, Ren-Kou | Yan, Jing | Jiang, Jun | Li, Jiu-yu | Kamran, Muhammad Aqeel
Extracellular polymeric substances (EPS) found in soils can reduce the mobility of heavy metals through the use of both electrostatic and non-electrostatic mechanisms. Their effects vary from one soil type to another. The influence of EPS from Escherichia coli on the adsorption behaviors of Cu(II) and Cd(II) by two bulk variable charge soils, Oxisol and Ultisol, was studied at constant and varied pH, and the results were compared to a constant charge Alfisol. The maximum adsorption capacities of the soils were significantly (P < 0.05) enhanced in the presence of EPS, with Cu(II) adsorption being greater. Interaction of EPS with soils made the soil surface charge more negative by neutralizing positive charges and shifting the zeta potentials in a negative direction: from −18.6 to −26.4 mV for Alfisol, +5.1 to −22.2 mV for Oxisol, and +0.3 to −28.0 mV for Ultisol at pH 5.0. The adsorption data fitted both the Freundlich and Langmuir isotherms well. Preadsorbed Cd(II) was more easily desorbed by KNO₃ than preadsorbed Cu(II) from both the control and EPS treated soils. The adsorption of both metals was governed by electrostatic and non-electrostatic mechanisms, although more Cu(II) was adsorbed through the non-electrostatic mechanism. The information obtained in this study will improve our understanding of the mechanisms involved in reducing heavy metals mobility in variable charge soils and hence, their bioavailability.
显示更多 [+] 显示较少 [-]