细化搜索
结果 451-460 的 6,548
Polycyclic musks in surface water and sediments from an urban catchment in the megacity Beijing, China 全文
2020
Zhang, Handan | Bu, Qingwei | Wu, Dongkui | Yu, Gang
Two typical polycyclic musks (PCMs), namely 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-(g)-2-benzopyran (HHCB) and 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN), were determined in 63 surface water and 42 sediment samples collected from the North Canal River watershed, an urban catchment located in the megacity Beijing, China. Concentrations of HHCB and AHTN were 13.2 ng/L–395 ng/L and 2.98 ng/L–232 ng/L in surface water, while 4.10 ng/g–818 ng/g and 1.21 ng/g–731 ng/g in sediments. The results showed that PCM concentrations in the North Canal River watershed were at the high end when compared to that in other regions in China and worldwide. A watershed-wide annual mass budget showed that HHCB (∼150 kg/year) and AHTN (∼80 kg/year) mainly originated from urban wastewaters. Both PCMs were eliminated primarily by outflowing water (72 kg/year and 43 kg/year for HHCB and AHTN, respectively) and due to losses to the atmosphere (40 kg/year and 26 kg/year for HHCB and AHTN, respectively). An assessment of ecological risks posed by HHCB and AHTN to aquatic organisms in the North Canal River watershed was performed by using a tiered ecological risk assessment. The results showed that PCMs were unlikely to pose an ecological risk at the watershed scale (the probability of the incidence of adverse effect was <3.5% at the 99% protection level). However, according to the results from the risk quotient method, the tributaries draining wastewater effluents should be hotspots that warrant further research in future.
显示更多 [+] 显示较少 [-]A new thermoanalytical method for the quantification of microplastics in industrial wastewater 全文
2020
Mallow, Ole | Spacek, Stefan | Schwarzböck, Therese | Fellner, Johann | Rechberger, Helmut
Plastics are crucial for our modern lifestyle and yet pose a major threat to our environment. Rising levels of microplastics (MP) in rivers and oceans are a big challenge for our economy and regulatory institutions as well as from a scientific point of view. Smaller microplastic particles, in particular, are especially hard to identify and even harder to quantify in environmental samples. Hence, we present a novel and inexpensive approach to quantify microplastics (MP) on a weight basis, relying on a thermoanalytical method. The Elemental Analysis combined with Overdetermined Equation Method (EA-OEM) was originally developed for determining the plastic content of refuse-derived fuels. It makes use of the distinct differences in the organic elemental composition (C, H, N, S, O) of plastics, biogenic and inorganic materials to calculate the (micro)plastic content on a detailed weight base. The study presented provides the first experimental results yielded from the application of the EA-OEM and two different laboratory approaches to the analysis of polyethylene (PE) and polypropylene (PP) MP content in industrial effluent samples from one source. In this way, it was possible to ensure that the polymer composition was known and the MP content therein (10–29%) could be derived. Further, the study reveals good MP recovery rates when applying the methodology to PE/PP-spiked samples.
显示更多 [+] 显示较少 [-]Immunotoxicity of microplastics and two persistent organic pollutants alone or in combination to a bivalve species 全文
2020
Tang, Yu | Rong, Jiahuan | Guan, Xiaofan | Zha, Shanjie | Shi, Wei | Han, Yu | Du, Xueying | Wu, Fangzhu | Huang, Wei | Liu, Guangxu
Both microplastics and persistent organic pollutants (POPs) are ubiquitously present in natural water environment, posing a potential threat to aquatic organisms. While it has been suggested that the immune responses of aquatic organisms could be hampered by exposure to microplastics and POPs, the synergistic immunotoxic impact of these two types of pollutants remain poorly understood. In addition, little is known about the mechanism behind the immunotoxic effect of microplastics. Therefore, in the present study, the immunotoxicity of microplastics and two POPs, benzo[a]pyrene (B[a]P) and 17β-estradiol (E2), were investigated alone or in combination in a bivalve species, Tegillarca granosa. Evident immunotoxicity, as indicated by alterations of haemocyte count, blood cell composition, phagocytic activity, intracellular content of ROS, concentration of Ca²⁺ and lysozyme, and lysozyme activity, was revealed for both microplastics and the two POPs examined. In addition, the expression of six immune-, Ca²⁺ signalling-, and apoptosis-related genes was significantly altered by exposure of clams to the contaminants studied. Furthermore, the toxicity of POPs was generally aggravated by smaller microplastics (500 nm) and mitigated by larger ones (30 μm). This size dependent effect on POP toxicity may result from size dependent interactions between microplastics and POPs. Data obtained in this study also indicate that similar to exposure to B[a]P and E2, exposure to microplastics may hamper the immune responses of clams through a series of interdependent physiological and molecular processes.
显示更多 [+] 显示较少 [-]A 3D-hydrodynamic model for predicting the environmental fate of chemical pollutants in Xiamen Bay, southeast China 全文
2020
Ma, Liya | Lin, Bin-Le | Chen, Can | Horiguchi, Fumio | Eriguchi, Tomomi | Li, Yongyu | Wang, Xinhong
Simulation model is very essential for predicting the environmental fate and the potential environmental consequences of chemical pollutants including those from accidental chemical spills. However very few of such simulation model is seen related to Chinese costal water body. As the first step toward our final goal to develop a simulation model for the prediction and the risk assessment of chemical pollutants in Chinese coastal water, this study developed a three-dimensional (3D) hydrodynamic model of Xiamen Bay (XMB). This hydrodynamic model was externally derived by meteorological data, river discharge and boundary conditions of XMB. We used the model to calculate the physical factors, especially water temperature, salinity and flow field, from June to September 2016 in XMB. The results demonstrated a good match between observations and simulations, which underscores the feasibility of this model in predicting the spatial-temporal concentration of chemical pollutants in the coastal water of XMB. Longitudinal salinity distributions and the mixing profile of river-sea interactions are discussed, including the obvious gradation of salinity from the river towards sea sites shown by the model. We further assumed that 1000 kg and 1000 mg/L of a virtual chemical pollutant leaked out from Jiulong River (JR) estuary (point source) and whole XMB (non-point source), respectively. The model illustrates that it takes three months for XMB to become purified when point source pollution occurs in the estuary, while half a year to be required in the case of non-point source pollution across the entire bay. Moreover, the model indicated that pollutants can easily accumulate in the western coastal zone and narrow waters like Maluan Bay, which can guide environmental protection strategies.
显示更多 [+] 显示较少 [-]A new spatially explicit model of population risk level grid identification for children and adults to urban soil PAHs 全文
2020
Li, Fufu | Wu, Shaohua | Wang, Yuanmin | Yan, Daohao | Qiu, Lefeng | Xu, Zhenci
The traditional incremental lifetime cancer risk (ILCR) model of urban soil polycyclic aromatic hydrocarbon (PAH) health risk assessment has a large spatial scale and commonly calculates relevant statistics by regarding the whole area as a geographic unit but fails to consider the high heterogeneity of the PAH distribution and differences in population susceptibility and density in an area. Therefore, the risk assessment spatial performance is insufficient and does not reflect the characteristics of cities, which are centered on human activities and serve the needs of humans, thus making it difficult to effectively support PAH prevention and treatment measures in cities. Here, the random forest model combined with the kriging residual model (RFerr-K) is used to estimate high-precision PAH distributions, separately considering the exposure characteristics of children and adults with different susceptibilities, and kindergarten point-of-interest (POI) and population density index (PDI) data were used to estimate the distributions of the kindergarten children and adults in the study area. Through the refined expression of these three dimensions, a new spatially explicit model of the incremental lifetime cancer-causing population distribution (MapPILCR) was constructed, and the risk threshold range delineation method was proposed to accurately identify regional risk levels. The results showed that the RFerr-K model significantly improves the accuracy of PAH prediction. The susceptibility index (SI) of children is 45% higher than that of adults, and POI and PDI data can be used effectively in population distribution estimation. The MapPILCR model provides a useful method for the spatially explicit assessment of the cancer risk of urban populations to inspire urban pollution grid management.
显示更多 [+] 显示较少 [-]Driving factors of total-factor substitution efficiency of chemical fertilizer input and related environmental regulation policy: A case study of Zhejiang Province 全文
2020
Yang, Jianhui | Lin, Yaoben
Based on the panel data of 63 counties of Zhejiang Province from 2003 to 2017, this paper studied the total-factor substitution efficiency of chemical fertilizer input and its spatial-temporal evolution by using the Super-efficiency DEA(Data Envelopment Analysis) model, locational Gini coefficient and Theil index. And the driving factors of the total-factor substitution efficiency of chemical fertilizer input were analyzed by constructing the Panel Tobit model. The results showed that: the comprehensive efficiency of total-factor substitution for chemical fertilizer input in Zhejiang Province is low, and technical efficiency is the main drive for promoting comprehensive efficiency; Gini coefficient is below the warning line of 0.4, and the difference of substitution efficiency, relatively small, mainly comes from the contribution within the region, and the difference ratio of contribution by the Southwestern Zhejiang is rapidly increasing. In detail, financial investment in agriculture serve as the greatest the driving force, and government chemical fertilizer input subsidies have a significantly negative effect. Therefore, we should improve the subsidy policy system, increase government investment in agricultural infrastructure, adjust the structure of agroindustry and improve the income of rural residents under the premise of reducing the fertilizer input intensity.
显示更多 [+] 显示较少 [-]Automobile exhaust particles retention capacity assessment of two common garden plants in different seasons in the Yangtze River Delta using open-top chambers 全文
2020
Miao Zhou, | Wang, Xiang | Lin, Xintao | Yang, Shan | Zhang, Jing | Chen, Jian
Particulate matter (PM) pollution is a serious environmental problem in most of the cities in the Yangtze River Delta region. Plants can effectively filter ambient air by adsorbing PM. However, only a few studies have paid attention to the dynamic changes and seasonal differences in particle retention capacities of plants under long-term pollution. In this study, we investigated the dynamic changes in particle retention capabilities of the evergreen, broad-leaved, greening plants—Euonymus japonicus var. aurea-marginatus and Pittosporum tobira—in spring and summer. We employed an open-top chamber to simulate the severity of the tail gas pollution. The results showed that, both the plants reached a saturated state in 18–21 days, under continuous exposure to pollution (daily concentration of PM₂.₅: 214.64 ± 321.33 μg·cm⁻³). This was 6–8 days longer than that in the field experiments. In spring, the maximum retention of total particulate matter per unit leaf area of E. japonicus var. aurea-marginatus and P. tobira was 188.47 ± 3.72 μg cm⁻² (18 days) and 67.63 ± 2.86 μg cm⁻² (21 days), respectively. In summer, E. japonicus var. aurea-marginatus and P. tobira reached the maximum retention of the particle on the 21st day, with a net increase of 94.10 ± 3.77 μg cm⁻² and 27.81 ± 3.57 μg cm⁻², respectively. Irrespective of season, the particle retention capacity of E. japonicus var. aurea-marginatus was higher than that of P. tobira, and it showed a better effect on reducing the concentration of fine particles in the atmosphere. The particle retention of the two plants was higher in spring than that in summer. E. japonicus var. aurea-marginatus displayed a significant difference in particle retention between the seasons, while P. tobira did not show much difference. These results will provide a foundation for future studies on the dynamic changes and mechanism of particle retention in plants and management practices by employing plants for particle retention in severely polluted areas.
显示更多 [+] 显示较少 [-]Risk assessment of using fish from different types of reservoirs as human food – A study on European perch (Perca fluviatilis) 全文
2020
Nikolić, Dušan | Skorić, Stefan | Lenhardt, Mirjana | Hegediš, Aleksandar | Krpo-Ćetković, Jasmina
Concentrations of As, Cd, Cr, Cu, Hg, Pb, and Zn in sediment samples and muscle tissue of the European perch were analyzed using inductively-coupled plasma optical emission spectrometry (ICP-OES), with the aim to assess the potential ecological (RI) and human health risk, and the degree of contamination (Cd) of three types of reservoirs in Serbia, based on their purpose: electricity generation (Vlasina, Perućac, Zaovine, and Međuvršje), drinking water supply (Garaši), and recreation (Lake Sava). The concentrations of the studied elements were higher in sediments than in fish. However, the levels of Cd in fish caught in Vlasina, Zaovine, and Međuvršje, Hg in Perućac and Garaši, and Pb in Lake Sava exceeded the maximum allowed concentrations. The pollution load index (PLI) indicated that sediments in all six reservoirs were contaminated, but Cd was low; a moderate contamination with Cd was observed in Vlasina, Perućac, and Zaovine, Cr in Zaovine and Međuvršje, and Cu in Međuvršje. A low RI was recorded for all studied reservoirs. Cd was found to be the primary contamination and ecological risk factor. Total target hazard quotient (THQ) and target carcinogenic risk factor (TR) were higher for fishers operating in these reservoirs than for the general population. Higher values of PLI, Cd, RI, and TR were observed in electricity generation reservoirs. Results indicated that this type of reservoirs suffer from higher anthropogenic pressure and/or have a worse pollution management policy compared with other types of reservoirs included in this study, especially the drinking water supply reservoir.
显示更多 [+] 显示较少 [-]Stabilization process and potential of agro-industrial waste on Pb-Contaminated soil around Pb–Zn mining 全文
2020
Zhang, Yan | Wang, Xuemei | Ji, Hongbing
Sawdust wastes were used as precursors to prepare adsorbents by combustion and pyrolysis for experimental and mechanism studies and determine the potential of biomass extracted from agro-industrial residues for Pb-polluted soil remediation. Pot experiments were conducted on contaminated soils near Pb–Zn mining with sawdust ash (SA) and sawdust biochar (SB) in different proportions and dosage ratios. Studies have indicated that the application of biomass materials can enhance the adsorption, complexation and precipitation of Pb cations in soil and reduce the mobility of Pb. The concentrations of SPLP-Pb and DTPA-extractable Pb in amended soils were the lowest under 1% 1:2 and 5% 1:1 treatment, respectively. Results of fraction extraction and XANES analysis showed that the materials change the main forms of Pb in soil. Moreover, the binding behavior of Pb with organic matter increases the proportion of Pb (Ac)₂, leading to the transformation of high toxicity Pb-compounds into precipitates and complexes. The remediation methods of 2% 1:2 and 5% 1:2 were better than those of other methods in stabilizing Pb in soil. This study indicated that heat-treated sawdust can be used for Pb-polluted soil remediation, which is a type of environmental remediation measure with considerable ecological potential.
显示更多 [+] 显示较少 [-]Effects of nitrogen addition on soil methane uptake in global forest biomes 全文
2020
Xia, Nan | Du, Enzai | Wu. Xinhui, | Tang, Yang | Wang, Yang | de Vries, Wim
Nitrogen (N) deposition has been conventionally thought to decrease forest soil methane (CH₄) uptake, while the biome specific and dose dependent effect is poorly understood. Based on a meta-analysis of 63 N addition trials from 7 boreal forests, 8 temperate forests, 13 subtropical and 4 tropical forests, we evaluated the effects of N addition on soil CH₄ uptake fluxes across global forest biomes. When combining all N addition levels, soil CH₄ uptake was insignificantly decreased by 7% in boreal forests, while N addition significantly decreased soil CH₄ uptake by 39% in temperate forests and by 21% in subtropical and tropical forests, respectively. Meta-regression analyses, however, indicated a shift from a positive to a negative effect on soil CH₄ uptake with increasing N additions both in boreal forests (threshold = 48 kg N ha⁻¹ yr⁻¹) and temperate forests (threshold = 27 kg N ha⁻¹ yr⁻¹), while no such shift was found in subtropical and tropical forests. Considering that current N deposition to most boreal and temperate forests is below the abovementioned thresholds, N deposition likely exerts a positive to neutral effect on soil CH₄ uptake in both forest biomes. Our results provide new insights on the biome specific and dose dependent effect of N addition on soil CH₄ sink in global forests and suggest that the current understanding that N deposition decreases forest soil CH₄ uptake is flawed by high levels of experimental N addition.
显示更多 [+] 显示较少 [-]