细化搜索
结果 461-470 的 7,995
In situ catalytic reforming of plastic pyrolysis vapors using MSW incineration ashes 全文
2021
Ahamed, Ashiq | Liang, Lili | Chan, Wei Ping | Tan, Preston Choon Kiat | Yip, Nicklaus Tze Xuan | Bobacka, Johan | Veksha, Andrei | Yin, Ke | Lisak, Grzegorz
The valorization of municipal solid waste incineration bottom and fly ashes (IBA and IFA) as catalysts for thermochemical plastic treatment was investigated. As-received, calcined, and Ni-loaded ashes prepared via hydrothermal synthesis were used as low-cost waste-derived catalysts for in-line upgrading of volatile products from plastic pyrolysis. It was found that both IBA and air pollution control IFA (APC) promote selective production of BTEX compounds (i.e., benzene, toluene, ethylbenzene, and xylenes) without significantly affecting the formation of other gaseous and liquid species. There was insignificant change in the product distribution when electrostatic precipitator IFA (ESP) was used, probably due to the lack of active catalytic species. Calcined APC (C-APC) demonstrated further improvement in the BTEX yield that suggested the potential to enhance the catalytic properties of ashes through pre-treatment. By comparing with the leaching limit values stated in the European Council Decision, 2003/33/EC for the acceptance of hazardous waste at landfills, all the ashes applied remained in the same category after the calcination and pyrolysis processes, except the leaching of Cl⁻ from the ESP, which was around the borderline. Therefore, the use of ashes in catalytic reforming application do not significantly deteriorate their metal leaching behavior. Considering its superior catalytic activity towards BTEX formation, C-APC was loaded with Ni at 15 and 30 wt%. The Ni-loading favored an increase in overall oil yield, while reducing the gas yield when compared to the benchmark Ni loaded ZSM catalyst. However, Ni addition also caused the formation of more heavier hydrocarbons (C20–C35) that would require post-treatment to recover favorable products like BTEX.
显示更多 [+] 显示较少 [-]Characteristics and sources of amine-containing particles in the urban atmosphere of Liaocheng, a seriously polluted city in North China during the COVID-19 outbreak 全文
2021
Li, Zheng | Zhou, Ruiwen | Wang, Yiqiu | Wang, Gehui | Chen, Min | Li, Yuanyuan | Wang, Yachen | Yi, Yanan | Hou, Zhanfang | Guo, Qingchun | Meng, Jingjing
The Chinese government issued an unprecedentedly strict lockdown policy to control the spread of the novel coronavirus disease 2019 (COVID-19), significantly mitigating air pollution because of the dramatic reduction of industrial and traffic emissions. To explore the impact of COVID-19 lockdown (LCD) on organic aerosols, the mixing states and evolution processes of amine-containing particles were studied using a single particle aerosol mass spectrometer from January to March 2020 in Liaocheng, which is a seriously polluted city in North China. The counts and percentages of amine-containing particles in total obtained particles during the pre-LCD (547832, 29.8 %) were higher than those during the LCD (283983, 20.7 %) and post-LCD (102026, 18.4 %), mainly due to the reduced emission strength of amines and suppressed gas-to-particle partitioning of amines during the LCD and post-LCD. ⁷⁴(C₂H₅)₂NH₂⁺ was the most abundant amine marker, which accounted for 98.2 %, 98.4 %, and 96.7 % of all amine-containing particles during the pre-LCD, LCD, and post-LCD, respectively. Correlation analysis and temporal variations indicated that the gas-to-particle partitioning of amines was facilitated by the stronger acidic environment and lower temperature, while the effect of RH and aerosol liquid water content was minor. The A-OC particles were the most abundant type (accounting for ~40 %) throughout the observation period. The temporal profiles and correlation analysis suggested that the impact of the increased O₃ on the amines and their oxidation products (e.g., trimethylamine oxide) was minor. The identified particle types, correlation analysis, and the potential source contribution function results implied that the amine-containing particles were mainly derived from local and surrounding sources during the LCD, while those were mainly affected by long-range transport during the pre-LCD and post-LCD. Our results could deepen the comprehension of the sources and atmospheric processing of amines in the urban area of North China during the COVID-19 outbreak.
显示更多 [+] 显示较少 [-]Artificial light reduces foraging opportunities in wild least horseshoe bats 全文
2021
Luo, Bo | Xu, Rong | Li, Yunchun | Zhou, Wenyu | Wang, Weiwei | Gao, Huimin | Wang, Zhen | Deng, Yingchun | Liu, Ying | Feng, Jiang
Artificial light at night has been proposed as a global threat to biodiversity. Insectivorous bats are strictly nocturnal animals that are vulnerable to disruption from artificial light. Given that many light-sensitive bats tend to avoid night light during roost departure, it is often assumed that nighttime light pollution reduces their foraging opportunities, albeit empirical evidence in support of this hypothesis remains elusive. Here, we used least horseshoe bats, Rhinolophus pusillus, to assess whether white artificial light is detrimental for the opportunities of foraging. We manipulated the levels of ambient illumination and perceived predation risk inside the bat roost. We monitored bats' emergence activity using high-speed video and audio recording systems. DNA-based faecal dietary analysis and insect survey were applied to determine activity time of prey in foraging areas. Following experimentally manipulation of white light-emitting diode (LED) lighting 0–15 min after sunset, bat pass, flight duration, and echolocation pulse emission decreased. The mean emergence time of bats flying out was delayed by 14 min under lit treatment compared with the dark control. Only 10% of bats left for foraging during 40 min of light exposure. Aversive effects of LED light on bat emergence were robust regardless of the presence of a potential predator. Insect prey reached a peak of abundance between 30 and 60 min after sunset. These results demonstrate that white artificial light hinders evening emergence behavior in least horseshoe bats, leading to a mismatch between foraging onset and peak food availability. Our findings highlight that light pollution overrides foraging onset, suggesting the importance of improving artificial lighting scheme near the roosts of light-sensitive bats.
显示更多 [+] 显示较少 [-]Model-based analysis of phosphorus flows in the food chain at county level in China and options for reducing the losses towards green development 全文
2021
Zhou, Jichen | Jiao, Xiaoqiang | Ma, Lin | de Vries, Wim | Zhang, Fusuo | Shen, Jianbo
Insight in the phosphorus (P) flows and P balances in the food chain is largely unknown at county scale in China, being the most appropriate spatial unit for nutrient management advice. Here, we examined changes in P flows in the food chain in a typical agricultural county (Quzhou) during 1980–2017, using substance flow analyses. Our results show that external P inputs to the county by feed import and fertilizer were 7 times greater in 2017 than in 1980, resulting in a 7-fold increase in P losses to the environment in the last 3 decades, with the biggest source being animal production. Phosphorus use efficiency decreased from 51% to 30% in crop production (PUEc) and from 32% to 11% in the whole food chain (PUEf), but increased from 4% to 7% in animal production (PUEa). A strong reduction in P inputs and thus increase in PUE can be achieved by balanced P fertilization, which is appropriate for Quzhou considering a current average adequate soil P status. Fertilizer P use can be reduced from 7276 tons yr⁻¹ to 1765 tons yr⁻¹ to equal P removal by crops. This change would increase P use efficiency for crops from 30% to 86% but it has a negligible effect on P losses to landfills and water bodies. Increasing the recycling of manure P from the current 43%–95% would reduce fertilizer P use by 17% and reduce P losses by 47%. A combination of reduced fertilizer P use and increased recycling of manure P would save fertilizer P by 93%, reduce P accumulation by 100% and P loss by 49%. The results indicate that increasing manure-recycling and decreasing fertilizer-application are key to achieving sustainable P use in the food chain, which can be achieved through coupling crop-livestock systems and crop-based nutrient management.
显示更多 [+] 显示较少 [-]Global characterization of dose-dependent effects of cadmium in clam Ruditapes philippinarum 全文
2021
Zhan, Junfei | Wang, Shuang | Li, Fei | Ji, Chenglong | Wu, Huifeng
Cadmium (Cd) is being frequently detected in marine organisms. However, dose-dependent effects of Cd challenged unraveling the toxicological mechanisms of Cd to marine organisms and developing biomarkers. Here, the dose-dependent effects of Cd on clams Ruditapes philippinarum following exposure to 5 doses of Cd (3, 9, 27, 81, 243 μg/L) were investigated using benchmark dose (BMD) method. By model fitting, calculation of BMD values was performed on transcriptomic profiles, metals concentrations, and antioxidant indices. Cd exposure induced not only significant Cd accumulation in clams, but also marked alterations of essential metals such as Ca, Cu, Zn, Mn, and Fe. Gene regulation posed little influence on essential metal homeostasis, indicated by poor enrichment of differentially expressed genes (DEGs) associated with metal binding and metal transport in lower concentrations of Cd-treated groups. BMD analysis on biological processes and pathways showed that peptide cross-linking was the most sensitive biological process to Cd exposure, followed by focal adhesion, ubiquitin mediated proteolysis, and apoptosis. Occurrence of apoptosis was also confirmed by TUENL-positive staining in gills and hepatopancreas of clams treated with Cd. Furthermore, many DEGs, such as transglutaminases (TGs), metallothionein (MT), STEAP2-like and laccase, which presented linear or monotonic curves and relatively low BMD values, were potentially preferable biomarkers in clams to Cd. Overall, BMD analysis on transcriptomic profiles, metals concentrations and biochemical endpoints unraveled the sensitiveness of key events in response to Cd treatments, which provided new insights in exploring the toxicological mechanisms of Cd in clams as well as biomarker selection.
显示更多 [+] 显示较少 [-]An efficient phthalate ester-degrading Bacillus subtilis: Degradation kinetics, metabolic pathway, and catalytic mechanism of the key enzyme 全文
2021
Xu, Youqiang | Liu, Xiao | Zhao, Jingrong | Huang, Huiqin | Wu, Mengqin | Li, Xiuting | Li, Weiwei | Sun, Xiaotao | Sun, Baoguo
Phthalate ester pollution in the environment and food chain is frequently reported. Microbial treatment is a green and efficient method for solving this problem. The isolation and systematic investigation of microorganisms generally recognized as safe (GRAS) will provide useful resources. A GRAS Bacillus subtilis strain, BJQ0005, was isolated from Baijiu fermentation starter and efficiently degraded phthalate esters (PAEs). The half-lives for di-isobutyl phthalate, di-butyl phthalate and di-(2-ethylhexyl) phthalate were 3.93, 4.28, and 25.49 h, respectively, from the initial amount of 10 mg per 10 mL reaction mixture, which are records using wild-type strains. Genome sequencing and metabolic intermediate analysis generated the whole metabolic pathway. Eighteen enzymes from the α/β hydrolase family were expressed. Enzymes GTW28_09400 and GTW28_13725 were capable of single ester bond hydrolysis of PAEs, while GTW28_17760 hydrolyzed di-ester bonds of PAEs. Using molecular docking, a possible mechanism affecting enzymatic ester bond hydrolysis of mono-butyl phthalate was proposed of GTW28_17760. The carboxyl group generated by the first hydrolysis step interacted with histidine in the catalytic active center, which negatively affected enzymatic hydrolysis. Isolation and systematic investigation of the PAE degradation characteristics of B. subtilis will promote the green and safe treatment of PAEs in the environment and food industry.
显示更多 [+] 显示较少 [-]Measure-specific environmental benefits of air pollution control for coal-fired industrial boilers in China from 2015 to 2017 全文
2021
Wang, Kun | Tong, Yali | Yue, Tao | Gao, Jiajia | Wang, Chenlong | Zuo, Penglai | Liu, Jieyu
From 2015 to 2017, China took strong air pollution control measures (APCMs) for coal-fired industrial boilers (CFIBs), including eliminating CFIBs, promoting clean fuels, and updating air pollution control devices (APCDs). Based on the industrial boiler’s emission inventory of air pollutants, measure-specific emission reductions from 2015 to 2017 was estimated in this study. Besides, the measure-specific environmental benefits of unit emission reduction on concentration and deposition flux were systematically evaluated by WRF-CMAQ model. The total emission reductions for CFIBs of PM₁₀, PM₂.₅, SO₂, NOx, Hg, As, Cd, Cr and Pb from 2015 to 2017 were 1.2 Tg, 0.53 Tg, 2.06 Tg, 0.65 Tg, 37.6 tons, 179.5 tons, 17.9 tons, 1029.3 tons and 676.0 tons, respectively. Based on meteorological fields in 2017, their corresponding national population-weighted mitigated concentration was 1.8 μg m⁻³, 1.3 μg m⁻³, 3.6 μg m⁻³, 0.6 μg m⁻³ (NO₂), 0.076 ng m⁻³, 0.37 ng m⁻³, 0.04 ng m⁻³, 1.83 ng m⁻³ and 2.3 ng m⁻³, respectively. Updating APCDs was identified as the major measure to reduce air pollutants (except NOₓ), accounting for more than 35% of emission reductions and mitigated concentration. Moreover, elimination was the major NOx reduction method, contributing to 55% of NOx emission reductions. The promoting of fuels, including replacement of CFIBs with gas-fired and biomass-fired industrial boilers, had higher environmental benefits for unit emission reductions. Furthermore, there were still more than 43,000 CFIBs with the capacity <10 t h⁻¹, accounting for 14%, 21%, and 11% of total PM₂.₅, SO₂, and NOX emissions for CFIBs in 2017; meanwhile, 20% and 59% of CFIBs did not install flue gas desulfurization and denitrification devices, respectively. Therefore, it is recommended to give priority to phase out CFIBs with capacity <10 t h⁻¹ and APCDs updating for larger capacity CFIBs in the future.
显示更多 [+] 显示较少 [-]Associations between metabolic syndrome and four heavy metals: A systematic review and meta-analysis 全文
2021
Xu, Ping | Liu, Aiping | Li, Fengna | Tinkov, Alexey A. | Liu, Longjian | Zhou, Ji-Chang
Four most concerned heavy metal pollutants, arsenic, cadmium, lead, and mercury may share common mechanisms to induce metabolic syndrome (MetS). However, recent studies exploring the relationships between MetS and metal exposure presented inconsistent findings. We aimed to clarify the relationship between heavy metal exposure biomarkers and MetS using a meta-analysis and systematic review approach. Literature search was conducted in international and the Chinese national databases up to June 2020. Of selected studies, we extracted the relevant data and evaluated the quality of each study’s methodology. We then calculated the pooled effect sizes (ESs), standardized mean differences (SMDs), and their 95% confidence intervals (CIs) using a random-effect meta-analysis approach followed by stratification analyses for control of potential confounders. Involving 55,536 participants, the included 22 articles covered 52 observational studies reporting ESs and/or metal concentrations on specific metal and gender. Our results show that participants with MetS had significantly higher levels of heavy metal exposure [pooled ES = 1.16, 95% CI: 1.09, 1.23; n = 42, heterogeneity I² = 75.6%; and SMD = 0.22, 95% CI: 0.15, 0.29; n = 32, I² = 94.2%] than those without MetS. Pooled ESs in the subgroups stratified by arsenic, cadmium, lead, and mercury were 1.04 (95% CI: 0.97, 1.10; n = 8, I² = 61.0%), 1.10 (0.95, 1.27; 11, 45.0%), 1.21 (1.00, 1.48; 12, 82.9%), and 1.26 (1.06, 1.48; 11, 67.7%), respectively. Pooled ESs in the subgroups stratified by blood, urine, and the other specimen were 1.22 (95% CI: 1.08, 1.38; n = 26, I² = 75.8%), 1.06 (1.00, 1.13; 14, 58.1%), and 2.41 (1.30, 4.43; 2, 0.0%), respectively. In conclusion, heavy metal exposure was positively associated with MetS. Further studies are warranted to examine the effects of individual metals and their interaction on the relationship between MetS and heavy metals.
显示更多 [+] 显示较少 [-]Transgenerational metabolic disorders and reproduction defects induced by benzo[a]pyrene in Xenopus tropicalis 全文
2021
Usal, Marie | Veyrenc, Sylvie | Darracq--Ghitalla-Ciock, Marie | Regnault, Christophe | Sroda, Sophie | Fini, Jean-Baptiste | Canlet, Cécile | Tremblay-Franco, Marie | Raveton, Muriel | Reynaud, Stéphane
Transgenerational metabolic disorders and reproduction defects induced by benzo[a]pyrene in Xenopus tropicalis 全文
2021
Usal, Marie | Veyrenc, Sylvie | Darracq--Ghitalla-Ciock, Marie | Regnault, Christophe | Sroda, Sophie | Fini, Jean-Baptiste | Canlet, Cécile | Tremblay-Franco, Marie | Raveton, Muriel | Reynaud, Stéphane
Metabolic disorders induced by endocrine disruptors (ED) may contribute to amphibian population declines but no transgenerational studies have evaluated this hypothesis. Here we show that Xenopus tropicalis, exposed from the tadpole stage, to the ED benzo[a]pyrene (BaP, 50 ng.L⁻¹) produced F2 progeny with delayed metamorphosis and sexual maturity. At the adult stage, F2–BaP females displayed fatty liver with inflammation, tissue disorganization and metabolomic and transcriptomic signatures typical of nonalcoholic steato-hepatitis (NASH). This phenotype, similar to that observed in F0 and F1 females, was accompanied by a pancreatic insulin secretory defect. Metabolic disrupted F2–BaP females laid eggs with metabolite contents significantly different from the control and these eggs did not produce viable progeny. This study demonstrated that an ED can induce transgenerational disruption of metabolism and population collapse in amphibians under laboratory conditions. These results show that ED benzo[a]pyrene can impact metabolism over multiple generations and support epidemiological studies implicating environmental EDs in metabolic diseases in humans.
显示更多 [+] 显示较少 [-]Transgenerational metabolic disorders and reproduction defects induced by benzo[a]pyrene in Xenopus tropicalis 全文
2021
Usal, Marie | Veyrenc, Sylvie | Darracq--Ghitalla-Ciock, Marie | Regnault, Christophe | Sroda, Sophie | Fini, Jean-Baptiste | Canlet, Cécile | Tremblay-Franco, Marie | Raveton, Muriel | Reynaud, Stephane | Laboratoire d'Ecologie Alpine (LECA) ; Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (Fédération OSUG)-Université Grenoble Alpes (UGA) | Physiologie moléculaire et adaptation (PhyMA) ; Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS) | Metatoul AXIOM (E20) ; MetaboHUB-MetaToul ; MetaboHUB-Génopole Toulouse Midi-Pyrénées [Auzeville] (GENOTOUL) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-MetaboHUB-Génopole Toulouse Midi-Pyrénées [Auzeville] (GENOTOUL) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-ToxAlim (ToxAlim) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | ToxAlim (ToxAlim) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | ANR-11-INBS-0010,METABOHUB,Développement d'une infrastructure française distribuée pour la métabolomique dédiée à l'innovation(2011)
International audience | Metabolic disorders induced by endocrine disruptors (ED) may contribute to amphibian population declines but no transgenerational studies have evaluated this hypothesis. Here we show that Xenopus tropicalis, exposed from the tadpole stage, to the ED benzo[a]pyrene (BaP, 50 ng.L−1) produced F2 progeny with delayed metamorphosis and sexual maturity. At the adult stage, F2–BaP females displayed fatty liver with inflammation, tissue disorganization and metabolomic and transcriptomic signatures typical of nonalcoholic steato-hepatitis (NASH). This phenotype, similar to that observed in F0 and F1 females, was accompanied by a pancreatic insulin secretory defect. Metabolic disrupted F2–BaP females laid eggs with metabolite contents significantly different from the control and these eggs did not produce viable progeny. This study demonstrated that an ED can induce transgenerational disruption of metabolism and population collapse in amphibians under laboratory conditions. These results show that ED benzo[a]pyrene can impact metabolism over multiple generations and support epidemiological studies implicating environmental EDs in metabolic diseases in humans.
显示更多 [+] 显示较少 [-]Validation of Hydrocharis morsus-ranae as a possible bioindicator of trace element pollution in freshwaters using Ceratophyllum demersum as a reference species 全文
2021
Polechońska, Ludmiła | Klink, Agnieszka
The assessment of trace metal pollution in aquatic environments remains a challenge. Chemical methods are insufficient and bioindicators seem to be the most promising alternative. Finding an adequate species is important to ensure accurate data. The combined use of several bioindicators may help to overcome the limitations of species’ spatial distribution and specific reactions. The aims of the present study were to compare the contents and bioaccumulation capability of 11 trace elements in Ceratophyllum demersum and different organs of Hydrocharis morsus-ranae and to validate H. morsus-ranae as a bioindicator of pollution in aquatic reservoirs using C. demersum, an established bioindicator, as a reference species. The application of several statistical techniques allowed us to identify similarities in accumulation patterns and concentration gradients between the two species. The results showed that concentrations of Cd, Co, Cr, Cu, Mn, Ni, Pb, Rb, Zn, V in C. demersum and roots of H. morsus-ranae were similar and mostly higher than in the leaves and stems of H. morsus-ranae. The contents of Cd, Co, Cr, Li, Mn, Ni, Rb, V, Zn were positively correlated. The inner transport of metals in H. morsus-ranae was limited (TF < 1). Both species are accumulators (BF > 10³) of Ni and Zn, and H. morsus-ranae also of Cu and Pb. Frog-bit roots were chosen to be most promising in bioindication. Major axis regression analysis showed that the uptake of Cd, Cr, Co, Li and Pb was similar in the two species. Neural networks demonstrated substantial uniformity in responses of C. demersum and roots of H. morsus-ranae to the type of anthropogenic activity and land use and similar spatial distributions of Cd, Cr, Co, Li and Pb. When Nemerow Pollution Index was applied, both species showed congruent gradients of contamination. Thus, H. morsus-ranae was validated as a reliable bioindicator of trace metal pollution in freshwater.
显示更多 [+] 显示较少 [-]