细化搜索
结果 481-490 的 4,044
Long-term toxicity assessment of soils in a recovered area affected by a mining spill 全文
2016
Romero-Freire, A. | García Fernández, I. | Simón Torres, M. | Martínez Garzón, F.J. | Martín Peinado, F.J.
Residual pollution in the Guadiamar Green Corridor still remains after Aználcollar mine spill in 1998. The polluted areas are identified by the absence of vegetation, soil acidic pH and high concentrations of As, Pb, Zn and Cu. Soil toxicity was assessed by lettuce root elongation and induced soil respiration bioassays. In bare soils, total As and Pb concentrations and water-extractable levels for As, Zn and Cu exceeded the toxicity guidelines. Pollutants responsible for toxicity were different depending on the tested organism, with arsenic being most toxic for lettuce and the metal mixture to soil respiration. Soil properties, such as pH or organic carbon content, are key factors to control metal availability and toxicity in the area. According to our results, there is a risk of pollution to living organisms and the soil quality criteria established in the area should be revised to reduce the risk of toxicity.
显示更多 [+] 显示较少 [-]Environmental fate and effect assessment of thioridazine and its transformation products formed by photodegradation 全文
2016
Wilde, Marcelo L. | Menz, Jakob | Trautwein, Christoph | Leder, Christoph | Kümmerer, Klaus
An experimental and in silico quantitative structure-activity relationship (QSAR) approach was applied to assess the environmental fate and effects of the antipsychotic drug Thioridazine (THI). The sunlight-driven attenuation of THI was simulated using a Xenon arc lamp. The photodegradation reached the complete primary elimination, whereas 97% of primary elimination and 11% of mineralization was achieved after 256 min of irradiation for the initial concentrations of 500 μg L−1 and 50 mg L−1, respectively. A non-target approach for the identification and monitoring of transformation products (TPs) was adopted. The structure of the TPs was further elucidated using liquid chromatography–high resolution mass spectrometry (LC–HRMS). The proposed photodegradation pathway included sulfoxidation, hydroxylation, dehydroxylation, and S- and N-dealkylation, taking into account direct and indirect photolysis through a self-sensitizing process in the higher concentration studied. The biodegradability of THI and photolytic samples of THI was tested according to OECD 301D and 301F, showing that THI and the mixture of TPs were not readily biodegradable. Furthermore, THI was shown to be highly toxic to environmental bacteria using a modified luminescent bacteria test with Vibrio fischeri. This bacteriotoxic activity of THI was significantly reduced by phototransformation and individual concentration-response analysis confirmed a lowered bacterial toxicity for the sulfoxidation products Thioridazine-2-sulfoxide and Thioridazine-5-sulfoxide. Additionally, the applied QSAR models predicted statistical and rule-based positive alerts of mutagenic activities for carbazole derivative TPs (TP 355 and TP 339) formed through sulfoxide elimination, which would require further confirmatory in vitro validation tests.
显示更多 [+] 显示较少 [-]Mobility and toxicity of heavy metal(loid)s arising from contaminated wood ash application to a pasture grassland soil 全文
2016
Mollon, L.C. | Norton, G.J. | Trakal, L. | Moreno-Jimenez, E. | Elouali, F.Z. | Hough, R.L. | Beesley, L.
Heavy metal(loid) rich ash (≤10,000 mg kg−1 total As, Cr, Cu and Zn) originating from the combustion of contaminated wood was subjected to several experimental procedures involving its incorporation into an upland pasture soil. Ash was added to soil that had been prior amended with local cattle manure, replicating practices employed at the farm scale. Metal(loid) concentrations were measured in soil pore water and ryegrass grown on soil/manure plus ash mixtures (0.1–3.0% vol. ash) in a pot experiment; toxicity evaluation was performed on the same pore water samples by means of a bacterial luminescence biosensor assay. Thereafter a sequential extraction procedure was carried out on selected soil, manure and ash mixtures to elucidate the geochemical association of ash derived metal(loid)s with soil constituents. Predictive modelling was applied to selected data from the pot experiment to determine the risk of transfer of As to meat and milk products in cattle grazing pasture amended with ash.The inclusion of manure to soils receiving ash reduced phyto-toxicity and increased ryegrass biomass yields, compared to soil with ash, but without manure. Elevated As and Cu concentrations in pore water and ryegrass tissue resulting from ash additions were reduced furthest by the inclusion of manure due to an increase in their geochemical association with organic matter. Zinc was the only measured metal(loid) to remain uniformly soluble and bioavailable regardless of the addition of ash and manure. Risk modelling on pot experimental data highlighted that an ash addition of >1% (vol.) to this pasture soil could result in As concentrations in milk and meat products exceeding acceptable limits.The results of this study therefore suggest that even singular low doses of ash applied to soil increase the risk of leaching of metal(loid)s and intensify the risk of As transfer in the food chain.
显示更多 [+] 显示较少 [-]Scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and aerosol time-of-flight mass spectrometry (ATOFMS) single particle analysis of metallurgy plant emissions 全文
2016
Arndt, J. | Deboudt, K. | Anderson, A. | Blondel, A. | Eliet, S. | Flament, P. | Fourmentin, M. | Healy, R.M. | Savary, V. | Setyan, A. | Wenger, J.C.
The chemical composition of single particles deposited on industrial filters located in three different chimneys of an iron-manganese (Fe–Mn) alloy manufacturing plant have been compared using aerosol time-of-flight mass spectrometry (ATOFMS) and scanning electron microscopy–energy dispersive X-ray spectrometry (SEM-EDX). Very similar types of particles were observed using both analytical techniques. Calcium-containing particles dominated in the firing area of the sintering unit, Mn and/or Al-bearing particles were observed at the cooling area of the sintering unit, while Mn-containing particles were dominant at the smelting unit. SEM-EDX analysis of particles collected downstream of the industrial filters showed that the composition of the particles emitted from the chimneys is very similar to those collected on the filters. ATOFMS analysis of ore samples was also performed to identify particulate emissions that could be generated by wind erosion and manual activities. Specific particle types have been identified for each emission source (chimneys and ore piles) and can be used as tracers for source apportionment of ambient PM measured in the vicinity of the industrial site.
显示更多 [+] 显示较少 [-]Regional differences in plant levels and investigations on the phytotoxicity of lithium 全文
2016
Franzaring, Jürgen | Schlosser, Sonja | Damsohn, Walter | Fangmeier, Andreas
The growing use of lithium (Li) in industrial and energetic applications and the inability to completely recycle the alkali metal will most likely increase anthropogenic emissions and environmental concentrations in the future. Although non-essential to plants, Li+ is an important ultra-trace element in the animal and human diet and is also used in the treatment of e.g. mental disorders. Most of the lithium is consumed with the drinking water and vegetables, but concentrations in foodstuffs vary with the geochemistry of the element. In order to identify potential risks and to avoid an overmedication due to consumption of Li rich or Li contaminated foods it is advisable to identify background levels and to derive recommended Daily Allowances (RDAs) for the element. Although Germany does not possess large amounts of primary or secondary resources of lithium, geochemical investigations (mineral and ground waters and soils) in this country confirm a wide variation of environmental concentrations with generally higher levels in the southwest. Despite the large number of soil and water data, only very few data exist on lithium concentrations in plants and its phytotoxicity. Within the scope of present study common grassland plant species were sampled in regions of SW-Germany with reportedly high geogenic levels of Li. The data are discussed with regard to literature surveys and existing reference values. Since lithium has phytotoxic effects a greenhouse experiment was performed with different Li salts (LiCl and Li2CO3) and plant species (maize, bean and buckwheat) to derive dose-response relationships for the endpoint shoot growth. While corn growth was not reduced significantly by soil concentrations of 118 ppm, EC50 values in buckwheat were 47 and 16 ppm for lithium derived from LiCl and Li2CO3, respectively.
显示更多 [+] 显示较少 [-]Comparison of pollution indices for the assessment of heavy metal in Brisbane River sediment 全文
2016
Duodu, Godfred Odame | Goonetilleke, Ashantha | Ayoko, G. A. (Godwin A.)
Estuarine environment is complex and receives different contaminants from numerous sources that are persistent, bioaccumulative and toxic. The distribution, source, contamination and ecological risk status of heavy metals in sediment of Brisbane River, Australia were investigated. Sediment samples were analysed for major and minor elements using LA-ICP-MS. Principal component analysis and cluster analysis identified three main sources of metals in the samples: marine sand intrusion, mixed lithogenic and sand intrusion as well as transport related. To overcome inherent deficiencies in using a single index, a range of sediment quality indices, including contamination factor, enrichment factor, index of geo-accumulation, modified degree of contamination, pollution index and modified pollution index were utilised to ascertain the sediment quality. Generally, the sediment is deemed to be “slightly” to “heavily” polluted. A further comparison with the Australian Sediment Quality Guidelines indicated that Ag, Cr, Cu, Ni, Pb and Zn had the potential to rarely cause biological effects while Hg could frequently cause biological effects. Application of potential ecological risk index (RI) revealed that the sediment poses moderate to considerable ecological risk. However, RI could not account for the complex sediment behaviour because it uses a simple contamination factor. Consequently, a modified ecological risk index (MRI) employing enrichment factor is proposed. This provides a more reliable understanding of whole sediment behaviour and classified the ecological risk of the sediment as moderate to very high. The results demonstrate the need for further investigation into heavy metal speciation and bioavailability in the sediment to ascertain the degree of toxicity.
显示更多 [+] 显示较少 [-]Assessment of mobilization of labile phosphorus and iron across sediment-water interface in a shallow lake (Hongze) based on in situ high-resolution measurement 全文
2016
Lin, Wanjing | Wang, Peifang | Wang, Chao | Hou, Jun | Miao, Lingzhan | Yuan, Ye | Wang, Teng | Liu, Cui
The internal loading of P is reported to be the main factor initiating algal blooms. However, there are only a few reports on the dynamic variation of labile P in the sediment and overlying water during the decomposition of algal. In addition, the widely perceived relationship between labile P and Fe was not supported by in situ obtained values in freshwater. Consequently, the in situ simultaneous measurement of diffusion gradients in thin-film techniques (DGT) was applied on a large scale to detect the mechanisms of labile P and Fe in a typical shallow lake (Lake Hongze). The newly developed ZrO-DGT and ZrO-Chelex DGT were combined to obtain the concentration of labile P and Fe. Results showed that decomposition of algal might be the main contributor for the concentration dots and peaks of labile P in sediment profiles, as well as for the high values on the horizontal heterogeneity index of labile P at the depth of 0–30 mm of the sediment. Moreover, there existed significant difference between the apparent diffusion fluxes of labile P and Fe across the sediment–water interface which obtained from June sampling and October sampling. The results of apparent diffusion flux in two periods indicated the sediments changed from “sink” to “source” for labile P, especially at Sites 4–8, 10, 13–14, and 18. However, the role of the labile Fe has no significantly variation in the values of the diffusion flux. This phenomenon also contributed to the poor relationship between labile P and Fe in the sediment which obtained from the October sampling. Accordingly, we conclude that algal decomposition might be essential for internal loading of P in this aquatic ecosystem, and that also be the reason for vicious circle of algal occurrence in the following year in the center of Lake Hongze.
显示更多 [+] 显示较少 [-]Nutrients versus emerging contaminants–Or a dynamic match between subsidy and stress effects on stream biofilms 全文
2016
Aristi, I. | Casellas, M. | Elosegi, A. | Insa, S. | Petrovic, M. | Sabater, S. | Acuña, V.
Freshwater ecosystems are threatened by multiple anthropogenic stressors, which might be differentiated into two types: those that reduce biological activity at all concentrations (toxic contaminants), and those that subsidize biological activity at low concentrations and reduce it at high concentrations (assimilable contaminants). When occurring in mixtures, these contaminants can have either antagonistic, neutral or synergistic effects; but little is known on their joint effects. We assessed the interaction effects of a mixture of assimilable and toxic contaminants on stream biofilms in a manipulative experiment using artificial streams, and following a factorial design with three nutrient levels (low, medium or high) and either presence or absence of a mixture of emerging contaminants (ciprofloxacin, erythromycin, diclofenac, methylparaben, and sulfamethoxazole). We measured biofilm biomass, basal fluorescence, gross primary production and community respiration. Our initial hypotheses were that biofilm biomass and activity would: increase with medium nutrient concentrations (subsidy effect), but decrease with high nutrient concentrations (stress effect) (i); decrease with emerging contaminants, with the minimum decrease at medium nutrient concentrations (antagonistic interaction between nutrients subsidy and stress by emerging contaminants) and the maximum decrease at high nutrient concentrations (synergistic interaction between nutrients and emerging contaminants stress) (ii). All the measured variables responded linearly to the available nutrients, with no toxic effect at high nutrient concentrations. Emerging contaminants only caused weak toxic effects in some of the measured variables, and only after 3–4 weeks of exposure. Therefore, only antagonistic interactions were observed between nutrients and emerging contaminants, as medium and high nutrient concentrations partly compensated the harmful effects of emerging contaminants during the first weeks of the experiment. Our results show that contaminants with a subsidy effect can alleviate the effects of toxic contaminants, and that long-term experiments are required to detect stress effects of emerging contaminants at environmentally relevant concentrations.
显示更多 [+] 显示较少 [-]Artificial breakwaters as garbage bins: Structural complexity enhances anthropogenic litter accumulation in marine intertidal habitats 全文
2016
Coastal urban infrastructures are proliferating across the world, but knowledge about their emergent impacts is still limited. Here, we provide evidence that urban artificial reefs have a high potential to accumulate the diverse forms of litter originating from anthropogenic activities around cities. We test the hypothesis that the structural complexity of urban breakwaters, when compared with adjacent natural rocky intertidal habitats, is a driver of anthropogenic litter accumulation. We determined litter abundances at seven sites (cities) and estimated the structural complexity in both urban breakwaters and adjacent natural habitats from northern to central Chile, spanning a latitudinal gradient of ∼15° (18°S to 33°S). Anthropogenic litter density was significantly higher in coastal breakwaters when compared to natural habitats (∼15.1 items m−2 on artificial reefs versus 7.4 items m−2 in natural habitats) at all study sites, a pattern that was temporally persistent. Different litter categories were more abundant on the artificial reefs than in natural habitats, with local human population density and breakwater extension contributing to increase the probabilities of litter occurrence by ∼10%. In addition, structural complexity was about two-fold higher on artificial reefs, with anthropogenic litter density being highest at intermediate levels of structural complexity. Therefore, the spatial structure characteristic of artificial reefs seems to enhance anthropogenic litter accumulation, also leading to higher residence time and degradation potential. Our study highlights the interaction between coastal urban habitat modification by establishment of artificial reefs, and pollution. This emergent phenomenon is an important issue to be considered in future management plans and the engineering of coastal ecosystems.
显示更多 [+] 显示较少 [-]Comparative quantitative proteomics unveils putative mechanisms involved into mercury toxicity and tolerance in Tigriopus japonicus under multigenerational exposure scenario 全文
2016
In our earlier work, Tigriopus japonicus were subjected to different mercuric chloride treatments (0–50 μg/L in the seawater) for five generations (F0–F4), and they were subsequently resumed under clean environments for one generation, i.e., F5. Accumulative effects were hypothesized to participate in mercury (Hg) multigenerational toxicity, however phenotypic plasticity could be responsible for metal resistance in this copepod against the long term exposure. Here, we specifically investigated the proteome profiles in the F0, F2, and F5 copepods of the control and 50 μg/L metal treatment, respectively, so as to elucidate the action mechanisms for Hg toxicity/tolerance in T. japonicus under the long term exposure. Functional enrichment analysis showed that a quite different proteomic response was observed in F5 compared with F0 and F2. Namely, the vast majority of enrichments were correlated with the down-regulated proteins in F0 and F2, whereas the enrichments for F5 were mostly attributable to the up-regulated proteins, suggesting that different mechanisms are responsible for Hg toxicity and tolerance (i.e., phenotypic plasticity). Hg toxicity prohibited many proteins in F0 and F2 which are related to several critical processes/pathways, e.g., protein translation, macromolecule metabolic process, DNA replication, cell cycle, cuticle organization, vitellogenesis, etc. In F5, many up-regulated proteins were enriched into compensatory systems, such as carbohydrate metabolism, myosin reorganizations, and stress-related defense pathway. Notably, glycolysis (an oxygen-independent pathway) was enhanced for energy allocation into metal detoxification and tolerance. Taken together, proteomics provides novel mechanistic insights into phenotypic plasticity used by T. japonicus when challenged with cumulative effects due to Hg multigenerational toxicity.
显示更多 [+] 显示较少 [-]