细化搜索
结果 481-490 的 4,896
Taxifolin ameliorates DEHP-induced cardiomyocyte hypertrophy via attenuating mitochondrial dysfunction and glycometabolism disorder in chicken
2019
Cai, Jingzeng | Shi, Guangliang | Zhang, Yuan | Zheng, Yingying | Yang, Jie | Liu, Qi | Gong, Yafan | Yu, Dahai | Zhang, Ziwei
Di-(2-ethylhexyl) phthalate (DEHP) is a prevalent environmental contaminant that severely impacts the health of human and animals. Taxifolin (TAX), a plant flavonoid isolated from yew, exerts protective effects on cardiac diseases. Nevertheless, whether DEHP could induce cardiomyocyte hypertrophy and its mechanism remains unclear. This study aimed to highlight the specific molecular mechanisms of DEHP-induced cardiomyocyte hypertrophy and the protective potential of TAX against it. Chicken primary cardiomyocytes were treated with DEHP (500 μM) and/or TAX (0.5 μM) for 24 h. The levels of glucose and adenosine triphosphate (ATP) were detected, and cardiac hypertrophy-related genes were validated by real-time quantitative PCR (qRT-PCR) and Western blot (WB) in vitro. The results showed that DEHP-induced cardiac hypertrophy was ameliorated by TAX, as indicated by the increased cardiomyocyte area and expression of atrial natriuretic peptide (ANP), natriuretic peptides A-like (BNP) and β-myosin heavy cardiac muscle (β-MHC). Furthermore, DEHP induced cardiac hypertrophy via the interleukin 6 (IL-6)/Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathway in vitro. In addition, DEHP disrupted mitochondrial function and glycometabolism by activating the insulin-like growth factor 1 (IGF1)/phosphatidylinositol 3-kinase (PI3K) pathway and the peroxisome proliferator activated receptors (PPARs)/PPARG coactivator 1 alpha (PGC-1α) pathway to induce cardiac hypertrophy in vitro. Intriguingly, those DEHP-induced changes were obviously alleviated by TAX treatment. Taken together, cardiac hypertrophy was induced by DEHP via activating the IL-6/JAK/STAT3 signaling pathway, triggering glycometabolism disorder and mitochondrial dysfunction in vitro, can be ameliorated by TAX. Our findings may provide a feasible molecular mechanism for the treatment of cardiomyocyte hypertrophy induced by DEHP.
显示更多 [+] 显示较少 [-]Nitrogen deposition affects both net and gross soil nitrogen transformations in forest ecosystems: A review
2019
Cheng, Yi | Wang, Jing | Chang, Scott X. | Cai, Zucong | Müller, Christoph | Zhang, Jinbo
Nitrogen (N) deposition has rapidly increased and is influencing forest ecosystem processes and functions on a global scale. Understanding process-specific N transformations, i.e., gross N transformations, in forest soils in response to N deposition is of great significance to gain mechanistic insights on the linkages between global N deposition and N availability or loss in forest soils. In this paper, we review factors controlling N mineralization, nitrification and N immobilization, particularly in relation to N deposition, discuss the limitations of net N transformation studies, and synthesize the literature on the effect of N deposition on gross N transformations in forest ecosystems. We found that more than 97% of published papers evaluating the effect of N deposition (including N addition experiments that simulate N deposition) on soil N cycle determined net rates of mineralization and nitrification, showing that N deposition significantly increased those rates by 24.9 and 153.9%, respectively. However, studies on net N transformation do not provide a mechanistic understanding of the effect of N deposition on N cycling. To date, a small number of studies (<20 published papers) have directly quantified the effect of N deposition on gross N transformation rates, limiting our understanding of the response of soil N cycling to N deposition. The responses to N deposition of specific N transformation processes such as autotrophic nitrification, heterotrophic nitrification, dissimilatory nitrate reduction to ammonium, N mineralization, and N immobilization are poorly studied. Future research needs to use more holistic approaches to study the impact of N deposition on gross N transformation rates, N loss and retention, and their microbial-driven mechanisms to provide a better understanding of the processes involved in N transformations, and to understand the differential responses between forest and other ecosystems.
显示更多 [+] 显示较少 [-]New Miscanthus hybrids cultivated at a Polish metal-contaminated site demonstrate high stomatal regulation and reduced shoot Pb and Cd concentrations
2019
Rusinowski, Szymon | Krzyżak, Jacek | Clifton-Brown, John | Kane, Elaine | Mos, Michal | Webster, Richard | Sitko, Krzysztof | Pogrzeba, Marta
The increased bioeconomy targets for the biomass share of renewable energy production across Europe should be met using land unsuitable for food production. Miscanthus breeding programs targeted the production of plants with a diverse range of traits allowing a wider utilization of land resources for biofuel production without competing with arable crops. These traits include increasing tolerances to drought, chilling, and to metal(loid)s excess. Two novel Miscanthus hybrids, GNT41 and GNT34, were compared against Miscanthus x giganteus (Mxg) on metal-contaminated arable land in Poland. This study aimed at evaluating their yield, biomass quality and quantifying seasonal differences in photosynthetic and transpiration parameters. A secondary objective was to identify key physiological mechanisms underlying differences in metal accumulation between the investigated plants. The new hybrids produced a similar yield to Mxg (13–15 t ha−1 yr−1), had shorter shoots, higher Leaf Area Index and stem number. Based on gas exchange measurements, GNT34 exhibited isohydric (water-conserving) behavior. The stomatal response to light of the new hybrids was at least twice as fast as that of Mxg, a trait that is often associated with increased seasonal water use efficiency. This contributed to the almost 40% reduction in shoot Pb and Cd concentrations for the new hybrids as compared to Mxg. This suggested that promoting stomatal regulation in conjunction with improved water conservation may be a target for improving plants for wider use on metals contaminated land.
显示更多 [+] 显示较少 [-]Composition and origin of PM2.5 in Mediterranean Countryside
2019
Atzei, D. | Fermo, P. | Vecchi, R. | Fantauzzi, M. | Comite, V. | Valli, G. | Cocco, F. | Rossi, A.
In this work PM₂.₅ was collected during winter and summer in a Sardinian village (Gonnostramatza, Italy) highly affected by biomass burning emissions. A multi-technique approach was adopted for the complete PM chemical characterization. The bulk characterization was performed by IC (Ion Chromatography), HPAEC (High-Performance Anion-Exchange Chromatography), TOT (Thermal Optical Transmittance) and ED-XRF (Energy-Dispersive X-Ray Fluorescence) while XPS (X-ray Photoelectron Spectroscopy) was used for the surface characterization. Using levoglucosan as specific tracer of biomass burning emissions, the assessment of the impact of this source was carried out and it represent the major PM source at the investigate site during winter. In winter the average levoglucosan concentration is 2096 ± 324 ng/m³ while during summer its concentration is negligible (18 ± 7 ng/m³). Levoglucosan content in PM₂.₅ during winter is on average 13.7%; it is estimated that 65% of PM₂.₅ is due to wood burning. XPS has been exploited in this work aiming at highlighting possible differences between surface and bulk composition of PM₂.₅. The surface of the particulate matter resulted enriched in carbon compared to the bulk. Among the components of XPS C1s signals recorded on the samples collected during winter, it was found that the signal at 286.5 eV, which is due to the presence of COH, reflects the bulk composition of levoglucosan.
显示更多 [+] 显示较少 [-]Occurrence and distribution of parabens and bisphenols in sediment from northern Chinese coastal areas
2019
Liao, Chunyang | Shi, Jianbo | Wang, Xiaoyun | Zhu, Qingqing | Kannan, Kurunthachalam
Despite high production and usage of parabens and bisphenols, little is known about their spatiotemporal distribution in the marine environment. In this study, we determined the concentrations of several parabens and their metabolites as well as bisphenol analogues in sediment collected from coastal areas of northern China. All sediment samples, including surface sediment and sediment cores, contained at least one of the parabens analyzed, and the total concentrations of parabens (ΣPBs; sum of six parabens) ranged from 1.37 to 24.2 ng/g dw (geometric mean: 3.30–6.09 g/g dw), which was comparable to or slightly higher than those found for the total concentrations of five detectable bisphenols (ΣBPAs; geometric mean: 2.18–4.61 ng/g dw). 4-hydroxybenzoic acid, a common metabolite of parabens, was found in all samples at concentrations in the range of 6.85–437 ng/g dw, which was one order of magnitude lower than those found for benzoic acid. Methyl-, ethyl-, and propyl-parabens were the predominant paraben analogues, collectively accounting for >88% of ΣPBs. Bisphenol A and bisphenol F were the two major bisphenols, collectively accounting for >86% of ΣBPAs. We also examined vertical profiles in concentrations of target analytes in sediment cores. The sediment core from the Shandong Peninsula showed a gradual increase in the concentrations of several parent and metabolic parabens as well as bisphenols during the past decade. Relatively higher concentrations of parabens and bisphenols were found in sediment cores collected from industrialized areas. Significant positive correlations were found among the concentrations of parabens in sediment, which suggested the existence of similar sources for these compounds. Overall, our findings suggest that the Bohai Sea coast is moderately contaminated with parabens and bisphenols in comparison to other coastal areas in China or elsewhere.
显示更多 [+] 显示较少 [-]Developmental exposure to polychlorinated biphenyls (PCBs) in the maternal diet causes host-microbe defects in weanling offspring mice
2019
Rude, Kavi M. | Pusceddu, Matteo M. | Keogh, Ciara E. | Sladek, Jessica A. | Rabasa, Gonzalo | Miller, Elaine N. | Sethi, Sunjay | Keil, Kimberly P. | Pessah, Isaac N. | Lein, Pamela J. | Gareau, Mélanie G.
The gut microbiota is important for maintaining homeostasis of the host. Gut microbes represent the initial site for toxicant processing following dietary exposures to environmental contaminants. The diet is the primary route of exposure to polychlorinated biphenyls (PCBs), which are absorbed via the gut, and subsequently interfere with neurodevelopment and behavior. Developmental exposures to PCBs have been linked to increased risk of neurodevelopmental disorders (NDD), including autism spectrum disorder (ASD), which are also associated with a high prevalence of gastrointestinal (GI) distress and intestinal dysbiosis. We hypothesized that developmental PCB exposure impacts colonization of the gut microbiota, resulting in GI pathophysiology, in a genetically susceptible host. Mouse dams expressing two heritable human mutations (double mutants [DM]) that result in abnormal Ca²⁺ dynamics and produce behavioral deficits (gain of function mutation in the ryanodine receptor 1 [T4826I-RYR1] and a human CGG repeat expansion [170–200 CGG repeats] in the fragile X mental retardation gene 1 [FMR1 premutation]). DM and congenic wild type (WT) controls were exposed to PCBs (0–6 mg/kg/d) in the diet starting 2 weeks before gestation and continuing through postnatal day 21 (P21). Intestinal physiology (Ussing chambers), inflammation (qPCR) and gut microbiome (16S sequencing) studies were performed in offspring mice (P28–P30). Developmental exposure to PCBs in the maternal diet caused significant mucosal barrier defects in ileum and colon (increased secretory state and tight junction permeability) of juvenile DM mice. Furthermore, PCB exposure increased the intestinal inflammatory profile (Il6, Il1β, and Il22), and resulted in dysbiosis of the gut microbiota, including altered β-diversity, in juvenile DM mice developmentally exposed to 1 mg/kg/d PCBs when compared to WT controls. Collectively, these findings demonstrate a novel interaction between PCB exposure and the gut microbiota in a genetically susceptible host that provide novel insight into environmental risk factors for neurodevelopmental disorders.
显示更多 [+] 显示较少 [-]The adverse effect of biochar to aquatic algae- the role of free radicals
2019
Zhang, Ying | Yang, Ruixin | Si, Xiaohui | Duan, Xingwei | Quan, Xie
The application of biochar in remediation and recovery of heavy metals and/or organic contaminants in water and soil is increasing. However, the adverse effect of biochar to aquatic organisms has not received enough attention. In this study, we conducted a study on the biotoxicity of biochar pyrolyzed from pine needle under oxygen-limited conditions. The toxicity of biochar was expressed with the following endpoints: cell growth, chlorophyll-a (Chl-a), reactive oxygen species (ROS), superoxide dismutase (SOD) content of Scenedesmus obliquus (S. obliquus) and the luminescence of Photobacterium phosphoreum (P. phosphoreum). Here, the effect of free radicals (FRs) contained in biochar was stressed. Our results show that the toxicity of biochar is significantly correlated with the concentration of FRs in biochar particles. Meanwhile, we found the FRs-containing biochar could induce the production of acellular ROS (such as ·OH) in water, which would also induce the production of interior cellular ROS in aquatic organisms. Our findings provide a new insight into the mechanism of toxicity aroused by biochar applications and aid in understanding its potential ecological risk.
显示更多 [+] 显示较少 [-]Exposure to tris(1,3-dichloro-2-propyl) phosphate (TDCPP) induces vascular toxicity through Nrf2-VEGF pathway in zebrafish and human umbilical vein endothelial cells
2019
Zhong, Xiali | Qiu, Jiahuang | Kang, Jianmeng | Xing, Xiumei | Shi, Xiongjie | Wei, Yanhong
The growing production and extensive use of organophosphate flame retardants (OPFRs) have led to an increase in their environmental distribution and human exposure. Developmental toxicity is a major concern of OPFRs' adverse health effects. However, the impact of OPFRs exposure on vascular development and the toxicity pathway for developmental defects are poorly understood. In this study, we investigated the effects of exposure to tris(1,3-dichloro-2-propyl) phosphate (TDCPP), a frequently detected OPFR, on early vascular development, and the possible role of nuclear factor erythroid 2-related factor (Nrf2)-dependent angiogenic pathway in TDCPP's vascular toxicity. TDCPP exposure at 300 and 500 μg/L impeded the growth of intersegmental vessels (ISV), a type of microvessels, as early as 30 hpf. Consistently, a similar pattern of decreased extension and remodeling of common cardinal vein (CCV), a typical macrovessel, was observed in zebrafish at 48 hpf and 72 hpf. Developing vasculature in zebrafish was more sensitive than general developmental parameters to TDCPP exposure. The expression of genes related to VEGF signaling pathway dose-dependently decreased in TDCPP-treated larvae. In in vitro experiments using human umbilical vein endothelial cells (HUVECs), the increased cell proliferation induced by VEGF was suppressed by TDCPP exposure in a dose-dependent fashion. In addition, we found a repression of Nrf2 expression and activity in TDCPP-treated larvae and HUVECs. Strikingly, the application of CDDO-Im, a potent Nrf2 activator, enhanced VEGF and protected against defective vascular development in zebrafish. Our results reveal that vascular impairment is a sensitive index for early exposure to TDCPP, which could be considered in the environmental risk assessment of OPFRs. The identification of Nrf2-mediating VEGF pathway provides new insight into the adverse outcome pathway (AOP) of OPFRs.
显示更多 [+] 显示较少 [-]Retrotransposon methylation and activity in wild fish (A. anguilla): A matter of size
2019
Pierron, Fabien | Daffe, Guillemine | Lambert, Patrick | Couture, Patrice | Baudrimont, Magalie
Understanding how organisms cope with global change is a major question in many fields of biology. Mainly, understanding the molecular mechanisms supporting rapid phenotypic changes of organisms in response to stress and linking stress-induced molecular events to adaptive or adverse outcomes at the individual or population levels remain a major challenge in evolutionary biology, ecology or ecotoxicology. In this view, the present study aimed to test (i) whether environmental factors, especially pollutants, can trigger changes in the activity of retrotransposons (RTs) in wild fish and (ii) if changes in RT DNA methylation or transcription levels can be linked to modifications at the individual level. RTs are genetic elements that have the ability to replicate and integrate elsewhere in the genome. Although RTs are mainly quiescent during normal development, they can be experimentally activated under life-threatening conditions, affecting the fitness of their host. Wild eels were collected in four sampling sites presenting differing levels of contamination. The methylation level and the transcriptional activity of two RTs and two genes involved in development and cell differentiation were analyzed in fish liver in addition to the determination of fish contaminants levels and diverse growth and morphometric indices. An up-regulation of RTs associated to lower methylation levels and lower growth indices were observed in highly contaminated fish. Our results suggest that RT activation in fish experiencing stress conditions could have both detrimental and beneficial implications, affecting fish growth but promoting resistance to environmental stressors such as pollutants.
显示更多 [+] 显示较少 [-]Occurrence of selected endocrine disrupting compounds in Iberian coastal areas and assessment of the environmental risk
2019
Salgueiro-González, N. | Campillo, J.A. | Viñas, L. | Beiras, R. | López-Mahía, P. | Muniategui-Lorenzo, S.
The spatial and temporal distribution of selected endocrine disrupting compounds (4-tert-octylphenol, 4-n-octylphenol, 4-n-nonylphenol, nonylphenol, and bisphenol A) in two coastal areas of the Iberian Peninsula (Ria de Vigo and Mar Menor lagoon) were evaluated for the first time. Seawater and sediment samples collected during spring and autumn of 2015 were analysed using greener extraction techniques and liquid chromatography-tandem mass spectrometry. The presence of branched isomers (4-tert-octylphenol and nonylphenol) and bisphenol A in almost all seawater and sediment samples demonstrated their importance as pollutants in the frame of water policy, while no concentrations of linear isomers (4-n-octylphenol and 4-n-nonylphenol) were found. Higher seawater levels were observed in Mar Menor lagoon, especially in spring, associated with wastewater treatment plant effluents and nautical, agricultural and industrial activities. Similar sediment concentrations were measured in both studied areas, being nonylphenol levels five times higher than those measured for the other EDCs. Experimental sediment–water partition coefficients showed a moderate sorption of target compounds to sediments. Risk quotients for water compartment evidenced a moderate risk posed by nonylphenol, considering the worst-case scenario. For sediments, moderate risk related to 4-tert-octylphenol and high risk to nonylphenol were estimated.
显示更多 [+] 显示较少 [-]