细化搜索
结果 481-490 的 7,214
Arsenic accumulation in Pteris vittata: Time course, distribution, and arsenic-related gene expression in fronds and whole plantlets
2022
Antenozio, Maria Luisa | Capobianco, Giuseppe | Costantino, Paolo | Vamerali, Teofilo | Bonifazi, Giuseppe | Serranti, Silvia | Brunetti, Patrizia | Cardarelli, Maura
In this work, arsenic (As) accumulation and distribution over time in Pteris vittata young fronds from adult plants and in whole plantlets, grown on a highly contaminated As-soil, was determined by μ-XRF. A linear increase in As content up to 60 days was found in young fronds at different times, and a progressive distribution from the apex to the base of the fronds was observed. In whole plantlets, As signal was detectable from 9 to 20 days in the apex of a few fronds and fiddleheads. Later, up to 60 days, As was localized in all fronds, in the rhizome and in basal part of the roots. The dynamics of expression of As-related genes revealed a good correlation between As content and the level of the As (III)-antiporter PvACR3 transcript in plantlets roots and fronds and in young fronds. Moreover, the transcription of As (V)-related gametophytic genes PvGAPC1, PvOCT4 increases over time during As accumulation while PvGSTF1 is expressed only in roots. Here, we demonstrate the suitability of the μ-XRF technique to monitor As accumulation, which allowed us to propose that As is initially directly transported to fiddleheads and apex of fronds, is later distributed to the whole fronds and simultaneously accumulated in the rhizome and roots. We also provide indications on the expression of candidate genes possibly involved in As (hyper)accumulation.
显示更多 [+] 显示较少 [-]Glycine ameliorates MBP-induced meiotic abnormalities and apoptosis by regulating mitochondrial-endoplasmic reticulum interactions in porcine oocytes
2022
Gao, Lepeng | Zhang, Chang | Yu, Sicong | Liu, Shuang | Wang, Guoxia | Lan, Hainan | Zheng, Xin | Li, Suo
Monobutyl phthalate (MBP) is the main metabolite of dibutyl phthalate (DBP) in vivo. MBP has a stable structure, can continuously accumulate in living organisms, and has the potentially to harm animal and human reproductive function. In the ovarian follicle microenvironment, MBP may lead to defects in follicular development and steroid production, abnormal meiotic maturation, impaired ovarian function and other reproductive deficits. In this study, SMART-seq was used to investigate the effects of MBP exposure on the in vitro maturation (IVM) and development of porcine oocytes. The results showed that differentially expressed genes after MBP exposure were enriched in the biological processes cytoskeleton, cell apoptosis, endoplasmic reticulum (ER) and mitochondria. Glycine (Gly) improved the developmental potential of porcine oocytes by regulating mitochondrial and ER function. The effect of Gly in protecting oocytes against MBP-induced damage was studied. The results showed that the addition of Gly significantly decreased the rate of MBP-induced spindle abnormalities, decreased the frequency of MBP-induced mitochondria-associated ER membrane (MAM) interactions, and downregulated the protein and gene expression of the linkage molecules Mitofusin 1 (MFN1) and Mitofusin 2 (MFN2) in the MAM. Additionally, treatment with Gly restored the distribution of the 1,4,5-triphosphate receptor 1 (IP₃R1) and voltage-dependent anion channel 1 (VDAC1), further decreasing the intracellular free calcium concentration ([Ca²⁺]ᵢ) levels and mitochondrial Ca²⁺ ([Ca²⁺]ₘ) , increasing the ER Ca²⁺ ([Ca²⁺]ER) levels, and thus significantly increasing the ER levels and mitochondrial membrane potential (ΔΨ m). Gly also decreased the levels of reactive oxygen species (ROS) and increased the levels of Glutathione (GSH), oocyte apoptosis-related indicators (Caspase-3 activity and Annexin V) and oocyte apoptosis-related genes (BAX, Caspase 3 and AIFM1). Our results suggest that Gly can ameliorate microtubule cytoskeleton abnormalities and improve oocyte maturation by reducing the defective mitochondrial–ER interactions caused by MBP exposure in vitro.
显示更多 [+] 显示较少 [-]Effect of bisphenol S on testicular tissue after low-dose nursing exposure
2022
Fenclová, Tereza | Chemek, Marouane | Havránková, Jiřina | Kolinko, Yaroslav | Sudová, Vendula | Moravec, Jiří | Navrátilová, Jana | Klein, Pavel | Králíčková, Milena | Nevoral, Jan
Exposure to endocrine disruptors such as bisphenols, can lead to and be the explanation for idiopathic infertility. In our study, we assessed the effect of exposure to bisphenol S (BPS) via breast milk on the testicular tissue health of adult male mice. Milking dams were exposed to BPS through drinking water (0.216 ng g bw/day and 21.6 ng g bw/day) from post-natal day 0–15. Although there was no significant difference in testicular histopathology between the control and experimental groups, we observed an increase in the number of tight and gap junctions in the blood-testis barrier (BTB) of adult mice after nursing BPS exposure. Moreover, there was an increase in oxidative stress markers in adult testicular tissue of mice exposed during nursing. Our nursing model indicates that breast milk is a route of exposure to an endocrine disruptor that can be responsible for idiopathic male infertility through the damage of the BTB and weakening of oxidative stress resistance in adulthood.
显示更多 [+] 显示较少 [-]Increased contribution to PM2.5 from traffic-influenced road dust in Shanghai over recent years and predictable future
2022
Wang, Meng | Duan, Yusen | Zhang, Zhuozhi | Huo, Juntao | Huang, Yu | Fu, Qingyan | Wang, Tao | Cao, Junji | Lee, Shun-cheng
Traffic contributes to fine particulate matter (PM₂.₅) in the atmosphere through engine exhaust emissions and road dust generation. However, the evolution of traffic related PM₂.₅ emission over recent years remains unclear, especially when various efforts to reduce emission e.g., aftertreatment technologies and high emission standards from China IV to China V, have been implemented. In this study, hourly elemental carbon (EC), a marker of primary engine exhaust emissions, and trace element of calcium (Ca), a marker of road dust, were measured at a nearby highway sampling site in Shanghai from 2016 to 2019. A random forest-based machine learning algorithm was applied to decouple the influences of meteorological variables on the measured EC and Ca, revealing the deweathered trend in exhaust emissions and road dust. After meteorological normalization, we showed that non-exhaust emissions, i.e., road dust from traffic, increased their fractional contribution to PM₂.₅ over recent years. In particular, road dust was found to be more important, as revealed by the deweathered trend of Ca fraction in PM₂.₅, increasing at 6.1% year⁻¹, more than twice that of EC (2.9% year⁻¹). This study suggests that while various efforts have been successful in reducing vehicular exhaust emissions, road dust will not abate at a similar rate. The results of this study provide insights into the trend of traffic-related emissions over recent years based on high temporal resolution monitoring data, with important implications for policymaking.
显示更多 [+] 显示较少 [-]Sodium hydrosulfite together with silicon detoxifies arsenic toxicity in tomato plants by modulating the AsA-GSH cycle
2022
Kaya, Cengiz | Ashraf, Muhammad
The main intent of the current research was to appraise if combined application of hydrogen sulfide (H₂S, 0.2 mM) and silicon (Si 2.0 mM) could improve tolerance of tomato plants to arsenic (As as sodium hydrogen arsenate heptahydrate, 0.2 mM) stress. Plant growth, chlorophylls (Chl), PSII maximum efficiency (Fv/Fm), H₂S concentration and L-cysteine desulfhydrase activity were found to be suppressed, but leaf and root As, leaf proline content, phytochelatins, malondialdehyde (MDA) and H₂O₂ as well as the activity of lipoxygenase (LOX) increased under As stress. H₂S and Si supplied together or alone enhanced the concentrations of key antioxidant biomolecules such as ascorbic acid, and reduced glutathione and the activities of key antioxidant system enzymes including catalase (CAT), superoxide dismutase (SOD), dehydroascorbate reductase (DHAR), glutathione reductase (GR), and glutathione S-transferase (GST). In comparison with individual application of H₂S or Si, the joint supplementation of both had better effect in improving growth and key biochemical processes, and reducing tissue As content, suggesting a putative collaborative role of both molecules in improving tolerance to As-toxicity in tomato plants.
显示更多 [+] 显示较少 [-]Accumulation of chemical elements and occurrence of microplastics in small pelagic fish from a neritic environment
2022
da Silva, Joana M. | Alves, Luís M.F. | Laranjeiro, Maria I. | Bessa, Filipa | Silva, Andreia V. | Norte, Ana C. | Lemos, Marco F.L. | Ramos, Jaime A. | Novais, Sara C. | Ceia, Filipe R.
The assessment of contaminant exposure in marine organisms often focuses on the most toxic chemical elements from upper trophic level species. Information on mid-trophic level species and particularly on potentially less harmful elements is lacking. Additionally, microplastics have been considered emergent contaminants in aquatic environments which have not been extensively studied in species from mid-trophic levels in food chains. This study aims to contribute to an overall assessment of environmental impacts of such chemicals in a community of small pelagic fish in the North Atlantic. The concentrations of 16 chemical elements, rarely simultaneously quantified (including minerals, trace elements and heavy metals), and the presence of microplastics were analysed in sardines (Sardina pilchardus) and mackerels (Scomber spp. and Trachurus trachurus) sampled along the Portuguese coast. Biochemical stress assessments and stable isotope analyses were also performed. The chemical element concentrations in S. pilchardus, T. trachurus, and Scomber spp. were relatively low and lower than the levels reported for the same species in the North Atlantic and adjacent areas. No clear relationships were found between chemical elements and oxidative damage in fish. However, the concentration of several chemical elements showed differences among species, being related with the species’ habitat use, trophic niches, and specific feeding strategies. The presence of plastic pieces in the stomachs of 29% of the sampled fishes is particularly concerning, as these small pelagic fish from mid-trophic levels compose a significant part of the diet of humans and other top predators. This study highlights the importance of multidisciplinary approaches focusing on the individual, including position data, stable isotopes, and oxidative stress biomarkers as complementary tools in contamination assessment of the marine mid-trophic levels in food chains.
显示更多 [+] 显示较少 [-]Comprehensive analyses of agrochemicals affecting aquatic ecosystems: A case study of Odonata communities and macrophytes in Saga Plain, northern Kyushu, Japan
2022
Tazunoki, Yuhei | Tokuda, Makoto | Sakuma, Ayumi | Nishimuta, Kou | Oba, Yutaro | Kadokami, Kiwao | Miyawaki, Takashi | Ikegami, Makihiko | Ueno, Daisuke
The negative influence of agrochemicals (pesticides: insecticide, fungicide, and herbicide) on biodiversity is a major ecological concern. In recent decades, many insect species are reported to have rapidly declined worldwide, and pesticides, including neonicotinoids and fipronil, are suspected to be partially responsible. In Japan, application of systemic insecticides to nursery boxes in rice paddies is considered to have caused rapid declines in Sympetrum (Odonata: Libellulidae) and other dragonfly and damselfly populations since the 1990s. In addition to the direct lethal effects of pesticides, agrochemicals indirectly affect Odonata populations through reductions in macrophytes, which provide a habitat, and prey organisms. Due to technical restrictions, most previous studies first selected target chemicals and then analyzed their influence on focal organisms at various levels, from the laboratory to the field. However, in natural and agricultural environments, various chemicals co-occur and can act synergistically. Under such circumstances, targeted analyses might lead to spurious correlations between a target chemical and the abundance of organisms. To address such problems, in this study we adopted a novel technique, “Comprehensive Target Analysis with an Automated Identification and Quantification System (CTA-AIQS)” to detect wide range of agrochemicals in water environment. The relationships between a wide range of pesticides and lentic Odonata communities were surveyed in agricultural and non-agricultural areas in Saga Plain, Kyushu, Japan. We detected significant negative relationships between several insecticides, i.e., acephate, clothianidin, dinotefuran, flubendiamide, pymetrozine, and thiametoxam (marginal for benthic odonates) and the abundance of lentic Epiprocta and benthic Odonates. In contrast, the herbicides we detected were not significantly related to the abundance of aquatic macrophytes, suggesting a lower impact of herbicides on aquatic vegetation at the field level. These results highlight the need for further assessments of the influence of non-neonicotinoid insecticides on aquatic organisms.
显示更多 [+] 显示较少 [-]Global PBDE contamination in cetaceans. A critical review
2022
Bartalini, Alice | Muñoz-Arnanz, Juan | García-Álvarez, Natalia | Fernández, Antonio | Jiménez, Begoña
This review summarizes the most relevant information on PBDEs’ occurrence and their impacts in cetaceans at global scale, with special attention on the species with the highest reported levels and therefore the most potentially impacted by the current and continuous release of these substances. This review also emphasizes the anthropogenic and environmental factors that could increase concentrations and associated risks for these species in the next future. High PBDE concentrations above the toxicity threshold and stationary trends have been related to continuous import of PBDE-containing products in cetaceans of Brazil and Australia, where PBDEs have never been produced. Non-decreasing levels documented in cetaceans from the Northwest Pacific Ocean might be linked to the increased e-waste import and ongoing production and use of deca-BDE that is still allowed in China. Moreover, high levels of PBDEs in some endangered species such as beluga whales (Delphinapterus leucas) in St. Lawrence Estuary and Southern Resident killer whales (Orcinus Orca) are influenced by the discharge of contaminated waters deriving from wastewater treatment plants. Climate change related processes such as enhanced long-range transport, re-emissions from secondary sources and shifts in migration habits could lead to greater exposure and accumulation of PBDEs in cetaceans, above all in those species living in the Arctic. In addition, increased rainfall could carry greater amount of contaminants to the marine environment, thereby, enhancing the exposure and accumulation especially for coastal species. Synergic effects of all these factors and ongoing emissions of PBDEs, expected to continue at least until 2050, could increase the degree of exposure and menace for cetacean populations. In this regard, it is necessary to improve current regulations on PBDEs and broader the knowledge about their toxicological effects, in order to assess health risks and support regulatory protection for cetacean species.
显示更多 [+] 显示较少 [-]Emissions of biogenic volatile organic compounds from urban green spaces in the six core districts of Beijing based on a new satellite dataset
2022
Li, Xin | Chen, Wenjing | Zhang, Hanyu | Xue, Tao | Zhong, Yuanwei | Qi, Min | Shen, Xianbao | Yao, Zhiliang
Urban green spaces (UGSs) are often positively associated with the health of urban residents. However, UGSs may also have adverse health effects by releasing biogenic volatile organic compounds (BVOCs) and increasing the ambient concentrations of ozone (O₃) and secondary organic aerosols in urban areas. BVOC emissions from UGSs might be underestimated because of the lack of consideration of the UGS land-use type in urban areas. As such, in this study, we used a newly released satellite dataset, Sentinel-2, with a resolution of 10 m, to derive the classification distribution of UGSs and predict the UGS emissions of BVOCs in Beijing in 2019. The results showed that the annual emissions of BVOCs from UGSs were approximately 2.9 Gg C (95% confidence interval (CI): 2.4–3.3) in the six core districts, accounting for approximately 39% of the total UGS emissions in Beijing. Compared with the results based on Sentinel-2, the BVOC emissions might be underestimated by approximately 37% (95% CI: 11–63) using the commonly used satellite dataset. UGSs produced the highest BVOC emissions in summer (from June to August), accounting for 75.2% of the annual emissions. UGSs contributed the most to the O₃ formation potential in summer, accounting for 41.5% of the total. We could attribute a considerable amount of the O₃ concentration (27.0 μg m⁻³, 95% CI: 21.4–32.6) to the UGS BVOCs produced in the core districts of Beijing in July. The new BVOC emissions dataset based on Sentinel-2 vegetation information facilitates modeling studies on the formation of surface O₃ in urban areas and assessments of the impact of UGSs on public health.
显示更多 [+] 显示较少 [-]Source apportionment, identification and characterization, and emission inventory of ambient particulate matter in 22 Eastern Mediterranean Region countries: A systematic review and recommendations for good practice
2022
Faridi, Sasan | Yousefian, Fatemeh | Roostaei, Vahid | Harrison, Roy M. | Azimi, Faramarz | Niazi, Sadegh | Naddafi, Kazem | Momeniha, Fatemeh | Malkawi, Mazen | Moh'd Safi, Heba Adel | Rad, Mona Khaleghy | Hassanvand, Mohammad Sadegh
Little is known about the main sources of ambient particulate matter (PM) in the 22 Eastern Mediterranean Region (EMR) countries. We designed this study to systematically review all published and unpublished source apportionment (SA), identification and characterization studies as well as emission inventories in the EMR. Of 440 articles identified, 82 (11 emission inventory ones) met our inclusion criteria for final analyses. Of 22 EMR countries, Iran with 30 articles had the highest number of studies on source specific PM followed by Pakistan (n = 15 articles) and Saudi Arabia (n = 8 papers). By contrast, there were no studies in Afghanistan, Bahrain, Djibouti, Libya, Somalia, Sudan, Syria, Tunisia, United Arab Emirates and Yemen. Approximately 72% of studies (51) were published within a span of 2015–2021.48 studies identified the sources of PM₂.₅ and its constituents. Positive matrix factorization (PMF), principal component analysis (PCA) and chemical mass balance (CMB) were the most common approaches to identify the source contributions of ambient PM. Both secondary aerosols and dust, with 12–51% and 8–80% (33% and 30% for all EMR countries, on average) had the greatest contributions in ambient PM₂.₅. The remaining sources for ambient PM₂.₅, including mixed sources (traffic, industry and residential (TIR)), traffic, industries, biomass burning, and sea salt were in the range of approximately 4–69%, 4–49%, 1–53%, 7–25% and 3–29%, respectively. For PM₁₀, the most dominant source was dust with 7–95% (49% for all EMR countries, on average). The limited number of SA studies in the EMR countries (one study per approximately 9.6 million people) in comparison to Europe and North America (1 study per 4.3 and 2.1 million people respectively) can be augmented by future studies that will provide a better understanding of emission sources in the urban environment.
显示更多 [+] 显示较少 [-]